K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2023

Bài 1

a, cm : A = 165 + 215 ⋮ 3

    A = 165 + 215

   A = (24)5 +  215

  A  = 220 + 215

 A  =  215.(25 + 1)

 A = 215. 33 ⋮ 3 (đpcm)

b,cm : B = 88 + 220 ⋮ 17

    B = (23)8 + 220 

    B =  216 + 220

    B = 216.(1 + 24)

    B = 216. 17 ⋮ 17 (đpcm)

 

 

  

1 tháng 9 2023

c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1

C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)

C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)

C = 1 + 42+...+ 22016.42

C = 1 + 42.(20+...+22016)

42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm

          

13 tháng 11 2023

Sửa đề: \(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)

=>\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{19}\right)⋮3\)

21 tháng 11 2021

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

21 tháng 11 2021

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^96(1+2+2^2)+2^99

=7(1+2^3+...+2^96)+2^99 ko chia hết cho 7

20 tháng 11 2016

a) A = (2 + 22) + (2+ 24) +......+ (223 + 224)

A = 6 + 22.(2 + 22) +.....+222.(2 + 22)

A= 6 + 22.6 +.....+ 222.6

A = 6.(1+22+.....+222)

Vì 6 chia hết cho 6 nên 6.(1+22+.....+222) cũng chia hết cho 6

Hay A chia hết cho 6

b) A = (2 + 2+ 23)+.......+(222 + 223 + 224)

A= 14  + ....+ 221. (2 + 22 +23)

A= 14 +....+ 221 . 14

A = 14 .( 1 +...+ 221)

Vì 14 chia hết cho 7 nên 14 .( 1 +...+ 221) cũng chia hết cho 7

Hay A chia hết cho 7

Nhớ tk cho mình nha

25 tháng 12 2021

\(A=1+2+2^2+2^3+....+2^{98}+2^{99}\\ \Leftrightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+....+\left(2^{98}+2^{99}\right)\\ \Leftrightarrow A=3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+....+2^{98}.\left(1+2\right)\\ \Leftrightarrow A=3+3.2^2+3.2^4+....+3.2^{98}\\ \Leftrightarrow A=3.\left(1+2^2+2^4+...+2^{98}\right)⋮3\)

30 tháng 10 2016

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)

A = 5460.(1+4^6+4^12+4^18)

A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420

A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21

23 tháng 10 2021

\(A+2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)

23 tháng 10 2021

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2\cdot3+...+2^{99}\cdot3\)

\(=6\left(1+...+2^{99}\right)⋮6\)