K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

C1 D1 D C A B

21 tháng 8 2016

Xét tứ giác ABCD có cạnh đối diện AD và BC cắt nhau tại O. Gọi D1 và C1 lần lượt là các điểm đối xứng của C và D qua O. Khi đó có :

\(AC_1=AC,BD_1=BD,C_1D_1=CD\)

Áp dụng định lí ta có:

\(ABD_1C_1:AD_1\perp BC_1\Leftrightarrow AB^2+C_1D_1^2=AC^2_1+BD^2_1\)

\(\Rightarrow AD\perp BC\Leftrightarrow AB^2+CD^2=AC^2+BD^2\)

22 tháng 6 2021

Gọi giao điểm 2 đường chéo AC,BD là E

Ta có: \(AB^2+CD^2=AE^2+BE^2+CE^2+DE^2\)

\(=\left(AE^2+DE^2\right)+\left(BE^2+CE^2\right)=AD^2+BC^2\)

\(\Rightarrow\) đpcm

25 tháng 2 2019

                            Giải

Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD

Ta cần chứng minh: \(S_{FGH}=\frac{1}{2}S_{ABCD}\)

               \(S_{FGH}=S_{FAD}-S_{FAG}-S_{FDH}-S_{AGD}-S_{DGH}\)

              \(=S_{AFD}-\frac{1}{2}\left(S_{FAC}+S_{FBD}\right)-\frac{1}{2}S_{ACD}-\frac{1}{2}S_{DGB}\)

\(=S_{ACD}+S_{ABC}+S_{FBC}-\frac{1}{2}\left(S_{ABC}+S_{FBC}+S_{DBC}+S_{FBC}\right)-\frac{1}{2}S_{ACD}\)

\(-\frac{1}{2}\left(S_{ACD}+S_{ABC}-S_{ADG}-S_{ABG}-S_{DBC}\right)\)

\(=\frac{1}{2}\left(S_{ADG}+S_{ABG}\right)=\frac{1}{2}.\frac{1}{2}\left(S_{ACD}+S_{ABC}\right)=\frac{1}{4}S_{ABCD}\left(đpcm\right)\)

27 tháng 2 2019

Giải

Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD

Ta cần chứng minh: SFGH=12 SABCD

               SFGH=SFAD−SFAG−SFDH−SAGD−SDGH

              =SAFD−12 (SFAC+SFBD)−12 SACD−12 SDGB

=SACD+SABC+SFBC−12 (SABC+SFBC+SDBC+SFBC)−12 SACD

−12 (SACD+SABC−SADG−SABG−SDBC)

=12 (SADG+SABG)=12 .12 (SACD+SABC)=14 SABCD(đpcm)

29 tháng 3 2020

GỌi EM là tiếp tuyến của đường tròn ngoại tiếp tam giác AEB , EN là tiếp tuyến của đường tròn ngoại tiếp tam giác CED

hai đường tròn tiếp xúc nhau 

=> M,E,N thẳng hàng

=> góc AEM = góc CEN

ta lại có góc AEM= góc ABE

               góc CEN = góc EDC

=> góc ABE= góc EDC 

=> AB//CD

zậy

2 tháng 4 2018

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

18 tháng 1 2021

60 o 90 o 120 o A B I C D O H

b) 

Gọi AC giao DB = I

Góc AIB có đỉnh I nằm trong đường tròn

\(\Rightarrow\widehat{AIB}=\frac{1}{2}.\left(sđ\widebat{AB}+sđ\widebat{CD}\right)\)

\(=\frac{1}{2}.\left(60^0+90^o\right)=90^o\)

=> AI vuông BI hay AC vuông BD ( đpcm )