\(\dfrac{y}{x-y}\) - \(\dfrac{x^3-xy^2}{x^2+y^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

\(\frac{\left(x^2+2\right)^2-4x^2}{y\left(x^2+2\right)-2xy-\left(x-1\right)^2-1}=\frac{x^2+2x+2}{y-1}\)

10 tháng 11 2019

chứng minh sao cho 2 phân thức đó bằng nhau

GIÚP VỚI !!!!!!!!!!

NV
13 tháng 4 2020

\(x^8+x^8+y^8+y^8+y^8+z^8+z^8+z^8\ge8\sqrt[8]{x^{16}y^{24}z^{24}}=8x^2y^3z^3\)

Tương tự: \(3x^8+2y^8+3z^8\ge8x^3y^2z^3\)

\(3x^8+3y^8+2z^8\ge8x^3y^3z^2\)

Cộng vế với vế:

\(8\left(x^8+y^8+z^8\right)\ge8\left(x^2y^3z^3+x^3y^2z^3+x^3y^3z^2\right)\)

\(\Leftrightarrow\frac{x^8+y^8+z^8}{x^3y^3z^3}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Dấu "=" xảy ra khi \(x=y=z\)

27 tháng 6 2018

\(x^2+6x+9=\left(x+3\right)^2\)

--

\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)

--

\(x^3+12x^2+48x+64=\left(x+4\right)^3\)

28 tháng 6 2018

1) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2x^2+50}{x^2+25}\)

\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)

2) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3+3^3-54-x^3\)

\(=27-54=-27\)

3) \(\left(2x+y\right)^2-\left(y+3x\right)^2\)

\(=4x^2+4xy+y^2-y^2-6xy-9x^2\)

\(=-5x^2-2xy\)

4) \(\left(2x+1\right)^3-\left(2x-1\right)^3-24x^2\)

\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2\)

\(=2\)

9 tháng 1 2019

Đặt \(\dfrac{x}{m} + \dfrac{y}{n} + \dfrac{z}{p} = k\)

<=> \(\dfrac{x}{m} =k <=> x = mk \)

<=> \(\dfrac{y}{n} = k <=> y =nk\)

<=> \(\dfrac{z}{p} = k <=> z = pk\)

Thay \(x = mk ; y=nk ; z=pk\) vào A , ta có :

\(\dfrac{(mk)^2+(nk)^2+(pk)^2}{(m^2k+n^2+p^2k)^2}\)

= \(\dfrac{m^2k^2+n^2k^2+p^2k^2}{(m^4k^2+n^4k^2+p^4k^2+2m^2n^2k^2+2n^2p^2k^2+2m^2p^2k^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^4+n^4+p^4+2m^2n^2+2n^2p+2m^2p^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^2+n^2+p^2)^2}\)

= \(\dfrac{1}{m^2+n^2+p^2} \)

Vậy A = \(\dfrac{1}{m^2+n^2+p^2}\)

6 tháng 6 2017

Ta có:

\(\left(a+b+c\right)^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)\) \(\Rightarrowđpcm\)

6 tháng 6 2017

Đề câu b max hư cấuoho

4 tháng 4 2017

Ta có:\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)(1)

\(\Leftrightarrow\) \(\dfrac{bx^2+ay^2}{ab}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)

\(\Leftrightarrow\) (a+b)(bx2+ay2) \(\geq\) ab(x+y)2

\(\Leftrightarrow\) abx2+a2y2+b2x2+aby2 \(\geq\) ab(x2+2xy+y2)

\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 \(\geq\) abx2+2abxy+aby2

\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 -abx2-2abxy-aby2 \(\geq\) 0

\(\Leftrightarrow\) (ay)2-2abxy+(bx)2 \(\geq\) 0

\(\Leftrightarrow\) (ay)2-2(ay).(bx)+(bx)2 \(\geq\) 0

\(\Leftrightarrow\) (ay-bx)2 \(\geq\) 0(2)

Ta có BĐT(2) luôn đúng nên suy ra BĐT(1) luôn đúng.

Dấu = xảy ra khi và chỉ khi x=y=0.

4 tháng 4 2017

Cho mình sửa dấu =

Dấu= xảy ra khi \(\begin{cases} x=y\\ a=b \end{cases}\)