Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Không giảm tính tổng quát
Giả sử \(a\ge b\Rightarrow a=b+m\left(m\ge0\right)\)
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\)
\(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)
\(=1+\dfrac{m+b}{b+m}=1+1=2\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)
Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) (Đpcm)
Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu
a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b
b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)
Nhân vế với vế ta được :
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)
Dấu "="xảy ra tại a=b
Bài 1.
Vì a, b, c, d \(\in\) N*, ta có:
\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)
\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)
\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)
\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)
Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.
Vậy M không có giá trị là số nguyên.
Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)
\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)
\(=\frac{a^2-2ab+b^2}{ab}\)
\(=\frac{\left(a-b\right)^2}{ab}\ge0\) ( do a;b > 0 )
Dấu "=" xảy ra khi :
\(a-b=0\Leftrightarrow a=b\)
Vậy ...
a)Ta có:\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{b+1-b}{b\left(b+1\right)}=\dfrac{1}{b^2+b}< \dfrac{1}{b^2}\)(do b>1)
\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{b-b+1}{\left(b-1\right)b}=\dfrac{1}{b^2-b}>\dfrac{1}{b^2}\)(do b>1)
b)Áp dụng từ câu a
=>\(\dfrac{1}{2}-\dfrac{1}{3}< \dfrac{1}{2^2}< \dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3}-\dfrac{1}{4}< \dfrac{1}{3^2}< \dfrac{1}{2}-\dfrac{1}{3}\)
.........................
\(\dfrac{1}{9}-\dfrac{1}{10}< \dfrac{1}{9^2}< \dfrac{1}{8}-\dfrac{1}{9}\)
=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}< S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
=>\(\dfrac{1}{2}-\dfrac{1}{10}< S< 1-\dfrac{1}{9}\)
=>\(\dfrac{2}{5}< S< \dfrac{8}{9}\)(đpcm)
Giả sử \(a\ge b\) suy ra a = b + m (m \(\ge\) 0).
Ta có \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)
\(=\frac{b}{b}+\frac{m}{b}+\frac{b}{b+m}=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}\)
\(=1+1=2\)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\) (dấu = xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\) a = b)
1 đ-ú-n-g nha, nghĩ mãi mới ra đó !
Ta có:
\(\frac{a}{b}>0\Rightarrow a,b\ne0\)
Giả sử: \(a\ge b\)Đặt: \(a=b+m\left(m\in N\right)\Rightarrow\frac{b+m}{b}+\frac{b}{b+m}=\frac{a}{b}+\frac{b}{a}\)
\(=1+\frac{m}{b}+1-\frac{m}{b+m}=2+\frac{m}{b}-\frac{m}{b+m}\) Vì: \(b\le b+m\Rightarrow\frac{m}{b}\ge\frac{m}{b+m}\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(ĐPCM\right)\)
Không giảm tính tổng quát, giả sử a > b => a = b + m (m > 0)
Ta có \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)
\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\) (dấu = xảy ra khi m = 0 <=> a = b)
ta có (a-b)2\(\ge\)0
a2+b2\(\ge\)2ab (1)
ta có \(\frac{a}{b} +\frac{b}{a}=\frac{a^2+b^2}{ab}\)
kết hợp với (1) ta có \(\frac{a}{b} +\frac{b}{a}=\frac{a^2+b^2}{ab}\) \(\ge\frac{2ab}{ab}=2\)
vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)
Giả sử \(a\ge b\Rightarrow a=b+m\left(m\ge0\right)\)
Ta có :
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\) \(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1\) \(+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)
\(=1+\dfrac{m+b}{b+m}=1+1=2\)
Dấu \("="\) chỉ xảy ra khi \(\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)
Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) \(\rightarrowđpcm\)
~ Chúc bn học tốt ~
Ta có : \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}+\dfrac{b}{a}}\) ( theo bất đẳng thức Cô-si )
\(\Rightarrow\) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)