Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{x-1}\)
\(\text{3) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2\left(x-y\right)z+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
a) ĐKXĐ: \(x\ne0\)
\(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{2\left(4x+1\right)+2x-3}{6x}\)
\(=\dfrac{10x-1}{6x}\)
b) ĐKXĐ: \(x,y\ne0\)
\(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
\(=\dfrac{\left(x-y\right).\left(x+y\right)}{6x^2y^2}.\dfrac{3xy}{x+y}\)
\(=\dfrac{x-y}{2xy}\)
a) Ta có: \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{2\left(4x+1\right)}{6x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{8x+2+2x-3}{6x}\)
\(=\dfrac{10x-1}{6x}\)
b) Ta có: \(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)}{6x^2y^2}\cdot\dfrac{3xy}{x+y}\)
\(=\dfrac{x-y}{2xy}\)
a) \(\dfrac{x^3-1}{x^2+x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)
b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)
\(=\dfrac{\left(x+y\right)^2}{x^2+xy+x^2-y^2}=\dfrac{\left(x+y\right)^2}{x\left(x+y\right)+\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(2x-y\right)}\)
c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x^3-a^3\right)}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x-a\right)\left(a^2+ax+x^2\right)}{a^2+ax+x^2}\)
\(=ax\left(x-a\right)\)
a: \(\dfrac{5}{2x+6}=\dfrac{5\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}\)
3/x^2-9=6/2(x+3)(x-3)
b: \(\dfrac{2x}{x^2-8x+16}=\dfrac{2x}{\left(x-4\right)^2}=\dfrac{6x^2}{3x\left(x-4\right)^2}\)
\(\dfrac{x}{3x^2-12x}=\dfrac{x}{3x\left(x-4\right)}=\dfrac{x\left(x-4\right)}{3x\left(x-4\right)^2}\)
c: \(\dfrac{x+y}{x}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{x\left(x-y\right)}\)
x/x-y=x^2/x(x-y)
e: \(\dfrac{1}{x+2}=\dfrac{2x-x^2}{x\left(x+2\right)\left(2-x\right)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{8\left(x+2\right)}{x\left(2-x\right)\left(2+x\right)}\)
\(\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}=\dfrac{1}{x-y}\)
\(VT=\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)
\(=\dfrac{2x^2+2xy+xy+y^2}{\left(2x^3+x^2y\right)+\left(-2xy^2-y^3\right)}\)
\(=\dfrac{\left(2x^2+2xy\right)+\left(xy+y^2\right)}{x^2\left(2x+y\right)-y^2\left(2x+y\right)}\)
\(=\dfrac{2x\left(x+y\right)+y\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)
\(=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{1}{x-y}=VP\left(đpcm\right)\)