Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần chứng minh :\(\dfrac{21n+4}{14n+3}\) tối giản
Giả sử : \(\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\Rightarrow d=1\)
Vậy phân số trên đã tối giản .
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tính chất tổng 3 góc trong 1 tam giác)
\(\Rightarrow\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{2}=90^o\)
\(\Rightarrow\dfrac{\widehat{B}+\widehat{C}}{2}=90^o-\dfrac{\widehat{A}}{2}\)
\(\Rightarrow\)\(tan\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=tan\left(90^o-\widehat{\dfrac{A}{2}}\right)\)
\(\Rightarrow tan\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=cot\dfrac{A}{2}\)
goij d là UCLN của 5n+1 và 6n+1
ta có 5n+1 chia hết cho d=> 6(5n+1) chia hết cho d=> 30n+6 chia hết cho d(1)
ta có 6n+1 chia hết cho d=> 5(6n+1) chia hết cho d=> 30n+5 chia hết cho d(2)
lấy (1)-(2)
ta có (30n+6)-(30n+5)chia hết cho d
vậy 1 chia hết cho d
nên d=(1;-1)
vậy phân số đã cho tối giản
Gọi d là ƯCLN của 21n+4 và 18n+3 (d €N*)
Suy ra 21n+4 chia hết cho d và 18n+3 chia hết cho d
Nên 126n+24 cũng chia hết cho d và 126n+21 cũng chia hết cho d
Suy ra (126n+24)-(126n+21) chia hết cho d
Tương đương 3 chia hết cho d
Suy ra d là 1 hoặc 3
Nếu d là 3 suy ra 21n +4 chia hết cho 3
Mà 21n chia hết cho3
Nên 4 chia hết cho 3 là vô lý
Vậy d là1 suy ra phân sô trên tối giản với mọi neN
Đáp án D
Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.
\(y=\dfrac{4}{x}+\dfrac{9}{1-x}\ge\dfrac{\left(2+3\right)^2}{x+1-x}=25\)
Dấu "=" xảy ra khi \(\dfrac{x}{2}=\dfrac{1-x}{3}\Rightarrow x=\dfrac{2}{5}\)
\(\Rightarrow a+b=7\)
Gọi \(d=ƯCLN\left(8n+5;6n+4\right)\left(d\in Z\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}8n+5⋮d\\6n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}24n+15⋮d\\24n+16⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in Z;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(8n+5;6n+4\right)=1\)
Vậy phân số \(\dfrac{8n+5}{6n+4}\) tối giản với mọi n
\(\rightarrowđpcm\)
Gọi d là \(UCLN\left(25m+7;15m+4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}25m+7⋮d\\15m+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(25m+7\right)⋮d\\5\left(15m+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}75m+21⋮d\\75m+20⋮d\end{matrix}\right.\)
\(\Rightarrow\left[\left(75m+21\right)-\left(75m+20\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\dfrac{25m+7}{15m+4}\) tối giản \(\forall m\in Z\)