\(\dfrac{1+cotx}{1-cotx}\)=\(\dfrac{tanx+1}{tanx-1}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{tanx+1}{tanx-1}=\dfrac{1+cotx}{1-cotx}\)

=>(tanx+1)(1-cotx)=(1+cotx)(tan x-1)

=>tan x-1+1-cot x=tan x-1+1-cot x

=>tan x-cot x=tan x-cot x(luôn đúng)

=>ĐPCM

NV
18 tháng 9 2020

36.

\(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

37.

\(cos3x\ne cosx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)

38.

\(\left\{{}\begin{matrix}x\ge0\\sin\pi x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\pi x\ne k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne k\end{matrix}\right.\)

39.

\(\left\{{}\begin{matrix}cos\left(x-\frac{\pi}{3}\right)\ne0\\tan\left(x-\frac{\pi}{3}\right)\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\\x-\frac{\pi}{3}\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{5\pi}{6}+k\pi\\x\ne-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

NV
18 tháng 9 2020

33.

\(\left\{{}\begin{matrix}cosx\ne0\\cos\frac{x}{2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

34.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\cotx\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\)

35.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\)

\(\Leftrightarrow x\ne k\pi\)

28 tháng 8 2017

boring

9 tháng 7 2018

đặt \(t=\tan x+\cot x\)

Thì PT trở thành

\(t^2-2=\dfrac{1}{2}t+1\)

\(\Leftrightarrow2t^2-t-6=0\Leftrightarrow t=2;t=-\dfrac{3}{2}\)

a) TH1 \(t=2\Leftrightarrow\tan x+\cot x=2\Leftrightarrow\tan^2x-2\tan x+1=0\)

\(\Leftrightarrow\tan x=1\Leftrightarrow x=\dfrac{\pi}{4};x=\dfrac{\pi}{4}+\pi\)(vì \(x\in\left(0;2\pi\right)\)

b) TH2:\(t=-\dfrac{3}{2}\Leftrightarrow\tan x+\dfrac{1}{\tan x}=-\dfrac{3}{2}\Leftrightarrow2\tan^2x+3\tan x+1=0\)

\(\Leftrightarrow\tan x=-1;\tan x=-\dfrac{1}{2}\)

+)\(\tan x=-1\Leftrightarrow x=-\dfrac{\pi}{4}+\pi;x=-\dfrac{\pi}{4}+2\pi\)

+) \(\tan x=-\dfrac{1}{2}\Leftrightarrow x=-0,46365+\pi;x=-0,46365+2\pi\)

Vậy trong khoảng đã cho PT có 6 No

NV
23 tháng 7 2020

a/ ĐKXĐ:

\(sin\left(\frac{\pi}{2}.sinx\right)\ne0\Rightarrow\frac{\pi}{2}.sinx\ne k\pi\)

\(\Rightarrow sinx\ne2k\)

\(-1\le sinx\le1\Rightarrow sinx\ne0\Rightarrow x\ne k\pi\)

b/

\(sinx-1\ge0\Leftrightarrow sinx\ge1\Rightarrow sinx=1\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

c/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow sin4x\ne0\)

\(\Rightarrow x\ne\frac{k\pi}{4}\)

d/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\sinx+cotx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\sin^2x+cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne k\pi\\-cos^2x+cosx+1\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\cosx\ne\frac{1-\sqrt{5}}{2}\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\pm arccos\left(\frac{1-\sqrt{5}}{2}\right)+k2\pi\end{matrix}\right.\)

e/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\Rightarrow x\ne k\pi\)

NV
10 tháng 9 2020

a/ \(\left\{{}\begin{matrix}tanx\ne-1\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{4}+k\pi\\x\ne\frac{\pi}{2}+k\pi\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\tanx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\tanx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\)

NV
10 tháng 8 2020

ĐKXĐ: \(\left\{{}\begin{matrix}sin2x\ne0\\tanx\ne-1\end{matrix}\right.\)

\(\frac{cosx}{sinx}-1=\frac{cos^2x-sin^2x}{1+\frac{sinx}{cosx}}+sin^2x-sinx.cosx\)

\(\Leftrightarrow\frac{cosx-sinx}{sinx}=cosx\left(cosx-sinx\right)-sinx\left(cosx-sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Rightarrow x=\frac{\pi}{4}+k\pi\\\frac{1}{sinx}=cosx-sinx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sinx.cosx-sin^2x=1\)

\(\Leftrightarrow2sinx.cosx+1-2sin^2x=3\)

\(\Leftrightarrow sin2x+cos2x=3\)

Vế trái không lớn hơn 2 nên pt vô nghiệm