\(x^{95}+x^{94}+x^{93}+...+x^2+x+1\) chia het cho da thuc
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

dap an la -9

26 tháng 12 2016

co ai giup ko

26 tháng 3 2019

Gọi đa thức thương là Q(x) ; đa thức dư là R(x) khi thực hiện phép chia P(x) cho \(x^4\)+\(x^2\)+1 ta viết được : P(x)=Q(x).(\(x^4\)+\(x^2\)+1) + R(x)

=> P(x) - R(x) = Q(x).(\(x^4\)+\(x^2\)+1)

=> R(x) chia cho \(x^2\)+\(x\)+1 có số dư là 1 - x hay R(x) = (ax+b).(\(x^2\)+\(x\)+1)

+1-x

R(x) chia cho \(x^2\)-\(x\)+1 có số dư là 3x-5 hay R(x) = (cx+d).(\(x^2\)-\(x\)+1)

+3x-5

=>(ax+b).(\(x^2\)+\(x\)+1) - (cx+d).(\(x^2\)-\(x\)+1) - 4x-4

<=> \(x^3\)(a-c) + \(x^2\)(a+b+c-d) + \(x\)(a+b-c+d-4) +b-d-4

Áp dụng hệ số bất định ta có:

=>\(\left\{{}\begin{matrix}a-c=0\\a+b+c-d=0\\a+b-c+d-4=0\\b-d-4=0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=c\\a+b=2\\b-d=4\\a+b+c-d=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a=c\\c-b=2\\b-d=4\\2c+b-d=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=c\\b+c=2\\b-d=4\\b+2c-d=0\end{matrix}\right.\)

Giải hệ phương trình ta có:

\(\left\{{}\begin{matrix}a=c=-2\\b=4\\c=-2\\d=0\end{matrix}\right.\)

Vậy R(x) = (-2x+4).(\(x^2\)+\(x\)+1) + 1-x

Vậy đa thúc dư là \(-2x^3\)+\(2x^2\)+x+5

26 tháng 3 2019

Bước giải hệ phương trình bạn có thể dùng máy tính CSIO 570 ES PLUS

mà giải( Giải ra dài lắm)

3 tháng 1 2020

mình mới lớp 6

bạn tham khảo ở đây nha !!! 

https://olm.vn/hoi-dap/detail/98064079856.html

11 tháng 7 2019

\(\frac{\left(x^{95}+x^{94}\right)+.....+\left(x+1\right)}{\left(x^{31}+x^{30}\right)+.....+\left(x+1\right)}=\frac{x^{94}\left(x+1\right)+......+\left(x+1\right)}{x^{30}\left(x+1\right)+.....+\left(x+1\right)}=\frac{x^{94}+x^{92}+....+x^2+1}{x^{30}+x^{28}+....+x^2+1}=\frac{\left(x^2+1\right)x^{92}+x^{88}\left(x^2+1\right).....+\left(x^2+1\right)}{\left(x^2+1\right)x^{28}+\left(x^2+1\right)x^{24}+....+\left(x^2+1\right)}=\frac{x^{92}+x^{88}+......+x^4+1}{x^{28}+x^{24}+.....+x^4+1}=\frac{x^{88}\left(x^4+1\right)+x^{80}\left(x^4+1\right)+....+\left(x^4+1\right)}{x^{24}\left(x^4+1\right)+x^{16}\left(x^4+1\right)+.....+\left(x^4+1\right)}=\frac{x^{88}+x^{80}+....+1}{x^{24}+x^{16}+...+1}\)

\(=\frac{x^{80}\left(x^8+1\right)+x^{64}\left(x^8+1\right)+.....+\left(x^8+1\right)}{x^{16}\left(x^8+1\right)+\left(x^8+1\right)}=\frac{x^{80}+x^{64}+.....+1}{x^{16}+1}=\frac{x^{64}\left(x^{16}+1\right)+.....+x^{16}+1}{x^{16}+1}=x^{64}+x^{32}+1\)