\(x^2-6x+8\) có hai nghiệm số là 2 và 4 .

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

\(x^2-6x+8=0\\ \Leftrightarrow x^2-4x-2x+8=0\\ \Leftrightarrow x\left(x-4\right)-2\left(x-4\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy đa thức \(x^2-6x+8\) có 2 nghiệm số \(2\)\(4\)

25 tháng 4 2021

Bài 1:

ta có M(x)=a.x2+5.x-3 và x=\(\frac{1}{2}\)

Cho M=0

\(\Rightarrow\)a.1/22+5.1/2-3=0

a.1/4+5/2-3=0

a.1/4-1/2=0

a.1/4=1/2

a=1/2:1/4

a=2

25 tháng 4 2021

Bài 2

Q(x)=x4+3.x2+1

=x2.x2+1,5.x2+1,5.x2+1,5.1,5-1,25

=x2.(x2+1,5)+1,5.(x2+1,5)-1,25

=(x2+1,5)(x2​+1,5)-1,25

\(\Rightarrow\)(x2​+1,5)2 \(\ge\)0 với \(\forall\)x

\(\Rightarrow\)(x2​+1,5)2-1,25\(\ge\)1,25 > 0

Vậy đa thức Q ko có nghiệm

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

A=-x2+6x-19

A=-(x2-6x+9)-10

A=-(x-3)2-10

Vì \(\left(x-3\right)^2\ge0\)

Nên \(-\left(x-3\right)^2\le0\)

=>\(A\le-10\)

=>A vô nghiệm

\(A=-x^2+6x-19\)

\(A=-\left(x^2-6x+9+10\right)\)

\(A=-\left(x+3\right)^2-19\)

Vì \(-\left(x+3\right)^2\le\)Với mọi x

\(\Rightarrow A\le-19\)với mọi x

\(\Rightarrow A\)Vô nghiệm

20 tháng 4 2016

Thay x=1 vào A(x) tính được A(x)=-17 nên x=1 ko là nghiệm của A(x)

Thay x=1 vào B(x), B(x)=0 nên x=1 là nghiệm B(x)

10 tháng 8 2016

a) vì (x+2)^2 lớn hơn hoặc băng 0 => (x+2)^2 +7 >0

=> ko có n

b) x^2 + 6x +11= x^2 + 6x +9 +2 =(x-3)^2 +2 >0

=> ko có n

10 tháng 8 2016

a. (x + 2)2 + 7

( x+2)2 luon dg, ma 7 dg nen (x+2)2+7 vo nghiem

b, hk p