Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\) chia hết cho \(\left(x+y\right)^2+\left(x-y\right)^2\) tức là chia hết cho \(2.\left(x^2+y^2\right)\) do đó chia hết cho \(x^2+y^2\)
1, a, = (3x+15-x+7 )( 3x+15+x-7)
= ( 2x +22)( 4x+8)
=8( x+11)( x+2)
b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)
=(x-9y)(x-y)
2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)
b,
Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm).
a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)
b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)
c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)
d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)
e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)
f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)
i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)
Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))
Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.
Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)
Thay x=1 vào \(f\left(x\right)\): \(f\left(1\right)=1^{2018}+1^{2018}-2=0\)
\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)
\(\Rightarrowđpcm\)
\(g\left(x\right)=x^2-x\)
g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)
Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)
+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)
+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)
Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)
Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)
Câu 2:
Ta có:
\(P\left(x\right)=x^{100}+x^2+1\)
\(=x^{100}-x^{99}+x^{98}+x^{99}-x^{98}+x^{97}+...+x^3-x^2+x^2+x^2-x+1\)
\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)+...+\left(x^2-x+1\right)\)
\(=\left(x^{98}+x^{97}+...+x+1\right)\left(x^2-x+1\right)\)
\(=Q\left(x\right).\left(x^{98}+x^{97}+...+x+1\right)\)
\(\Rightarrow P\left(x\right)⋮Q\left(x\right)\)
Câu 1:
Do P(x) bậc 3 và \(x^2-x+1\) bậc 2 nên đa thức thương có bậc 1, gọi đa thức thương có dạng \(ax+b\)
Do \(P\left(x\right)\) chia hết \(x-1\) và \(x-2\) nên \(P\left(1\right)=P\left(2\right)=0\)
Do \(P\left(x\right)\) chia \(x^2-x+1\) dư \(2x-3\)
\(\Rightarrow P\left(x\right)=\left(ax+b\right).\left(x^2-x+1\right)+2x-3\)
Thay \(x=1\) ta được:
\(P\left(1\right)=\left(a+b\right)\left(1-1+1\right)+2-3=0\)
\(\Leftrightarrow a+b=1\)
Thay \(x=2\) ta được:
\(P\left(2\right)=\left(2a+b\right)\left(4-2+1\right)+4-3=0\)
\(\Leftrightarrow3\left(2a+b\right)=-1\Leftrightarrow6a+3b=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\6a+3b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=-\frac{7}{3}\end{matrix}\right.\)
\(\Rightarrow P\left(x\right)=\left(\frac{4}{3}x-\frac{7}{3}\right)\left(x^2-x+1\right)+2x-3\)
Bạn có thể nhân phá ra và rút gọn
Gọi H(x) là thương trong phép chia G(x) cho P(x)
Ta có : G(x) bậc 6, P(x) bậc 2 => H(x) bậc 4
=> H(x) có dạng x4 + mx3 + nx2 + px + 2 ( hệ số mình chọn là 2 chắc bạn biết )
Khi đó G(x) chia hết cho P(x) <=> G(x) = H(x).P(x)
<=> x6 + ax2 + bx + 2 = ( x2 - x + 1 )( x4 + mx3 + nx2 + px + 2 )
<=> x6 + ax2 + bx + 2 = x6 + mx5 + nx4 + px3 + 2x2 - x5 - mx4 - nx3 - px2 - 2x + x4 + mx3 + nx2 + px + 2
<=> x6 + ax2 + bx + 2 = x6 + ( m - 1 )x5 + ( n - m + 1 )x4 + ( p - n + m )x3 + ( 2 - p + n )x2 + ( -2 + p )x + 2
Đồng nhất hệ số ta có :
\(\hept{\begin{cases}m-1=0\\n-m+1=0\\p-n+m=0\end{cases}}\); \(\hept{\begin{cases}2-p+n=a\\-2+p=b\end{cases}}\)
=> \(\hept{\begin{cases}m=1\\n=0\\p=-1\end{cases}}\); \(\hept{\begin{cases}a=3\\b=-3\end{cases}}\)
Vậy a = 3 ; b = -3
\(\left(\left(x+y\right)^2\right)^3+\left(\left(x-y\right)^2\right)^3\)
\(=\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=\left(2x^2+2y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=2\left(x^2+y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)⋮\left(x^2+y^2\right)\)
\(\left(x+y\right)^6+\left(x-y\right)^6\)
\(=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\)
\(=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left(...\right)\)
\(=\left(x^2+2xy+y^2+x^2-2xy+y^2\right)\left(...\right)\)
\(=\left(2x^2+2y^2\right)\left(...\right)\)
\(=2\left(x^2+y^2\right)\left(...\right)⋮x^2+y^2\left(đpcm\right)\)