Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\) chia hết cho \(\left(x+y\right)^2+\left(x-y\right)^2\) tức là chia hết cho \(2.\left(x^2+y^2\right)\) do đó chia hết cho \(x^2+y^2\)
Có: \(x+y+z⋮6\)
\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)
\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)
\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)
\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)
Ta có:\(x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\)x+y+z là số chẵn.
\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn
\(\Rightarrow xyz⋮2\)
\(\Rightarrow3xyz⋮6\)
\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))
đpcm
Lời giải:
Đặt \((x+y)^2=a; (x-y)^2=b\)
\(\Rightarrow a+b=2(x^2+y^2)\)
Khi đó:
\((x+y)^6+(x-y)^6=a^3+b^3=(a+b)(a^2-ab+b^2)=2(x^2+y^2)(a^2-ab+b^2)\vdots x^2+y^2\)
Ta có đpcm.
\(\dfrac{G\left(x\right)}{P\left(x\right)}\)
\(=\dfrac{x^6-1+ax^2+bx+3}{x^2-x+1}\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)+\dfrac{ax^2-ax+a+\left(b+a\right)x+3-a}{x^2-x+1}\)
\(=A+\dfrac{\left(b+a\right)x+3-a}{x^2-x+1}\)
G(x) chia hêt cho P(x)=0
=>3-a=0 và a+b=0
=>a=3 và b=-3
\(=\dfrac{\left(x+y\right)^2}{x}.\dfrac{x}{\left(x+y\right)^2}-\dfrac{\left(x+y\right)^2}{x}.\dfrac{x}{\left(x+y\right)\left(x-y\right)}-\dfrac{5x-3y}{y-x}\)
\(=1-\dfrac{x+y}{x-y}+\dfrac{5x-3y}{x-y}\)
\(=\dfrac{x-y-x-y+5x-3y}{x-y}=\dfrac{5x-5y}{x-y}=5\)
1, a, = (3x+15-x+7 )( 3x+15+x-7)
= ( 2x +22)( 4x+8)
=8( x+11)( x+2)
b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)
=(x-9y)(x-y)
2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)
b,
Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm).
Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))
Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.
Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)
Thay x=1 vào \(f\left(x\right)\): \(f\left(1\right)=1^{2018}+1^{2018}-2=0\)
\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)
\(\Rightarrowđpcm\)
\(g\left(x\right)=x^2-x\)
g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)
Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)
+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)
+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)
Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)
Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)
\(\left(\left(x+y\right)^2\right)^3+\left(\left(x-y\right)^2\right)^3\)
\(=\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=\left(2x^2+2y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=2\left(x^2+y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)⋮\left(x^2+y^2\right)\)
\(\left(x+y\right)^6+\left(x-y\right)^6\)
\(=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\)
\(=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left(...\right)\)
\(=\left(x^2+2xy+y^2+x^2-2xy+y^2\right)\left(...\right)\)
\(=\left(2x^2+2y^2\right)\left(...\right)\)
\(=2\left(x^2+y^2\right)\left(...\right)⋮x^2+y^2\left(đpcm\right)\)