K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

D = 1 + 4 + 4 2 + 4 3 + . . . + 4 58 + 4 59

=  1 + 4 + 4 2 +  4 3 + 4 4 + 4 5 + ... +  4 57 + 4 58 + 4 59

=  1 + 4 + 4 2 +  4 3 . 1 + 4 + 4 2 + ... +  4 57 . 1 + 4 + 4 2

=  21 + 21 . 4 3 + . . . + 21 . 4 57 ⋮ 21

6 tháng 10 2018

A=1+4+42+43+44+...+458+459

A=(1+4)+(42+43)+...+(458+459)

A=1(1+4)+42(1+4)+44(1+4)+...+458(1+4)

A=1.5+42.5+44.5+...+458.5

A=(1+42+44+...+458)5

Vậy A chia hết cho 5

Bài trên mình gom hai số liền kề nhau vào 1 nhóm.

Bài tiếp theo bạn gom 3 số vào một nhóm va làm tương tự như bài trên.Bài tiếp theo nữa bạn gom 4 số vào 1 nhóm và lảm tương tự như bài trên

17 tháng 12 2021

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)

A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)

A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5

A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)

A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21

A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)

A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn

18 tháng 6 2018

a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5

= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))

= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )

= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20

= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5

4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21

= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )

= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )

= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84

= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21

b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6

= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )

= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )

= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30

= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6

9 tháng 10 2015

S=(1+4+42+43)+(44+45+46+47)+.......+(456+457+458+459)

  =(1+4+42+43)+44(1+4+42+43)+.......+456(1+4+42+43)

  =85(1+44+.....+456)=>đccm

23 tháng 12 2019

\(A=1+4+4^2...+4^{59}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^5+4^6\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

\(=21+4^3\cdot21+....+4^{57}\cdot21\)

\(=21\left(1+4^3+4^6+...+4^{57}\right)⋮21\)

\(\Leftrightarrow A⋮21\)

Hok tốt

23 tháng 12 2019

\(A = 1 + 4 + 4^2 + ... + 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)

\(A = ( 1 + 4 + 4^2 ) + ... + ( 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)\()\)

\(A = 21 + ... + 4\)\(57\)\(. ( 1 + 4 + 4^2 )\)

\(A = 21 + ... + 4\)\(57\) \(.21\)

\(A = 21 . ( 1 + ... + 4\)\(57\)\()\)\(⋮\)\(21\)

\(Vậy : A \)\(⋮\)\(21\)

6 tháng 6 2018

a/ Ta có :

\(A=4+4^2+.....+4^{23}+4^{24}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+....+\left(4^{23}+4^{24}\right)\) (12 nhóm)

\(=4\left(4+4^2\right)+4^3\left(4+4^2\right)+.......+4^{23}\left(4+4^2\right)\)

\(=4.20+4^3.20+.....+4^{23}.20\)

\(=20\left(4+4^3+...+4^{23}\right)⋮20\)

\(\Leftrightarrow A⋮20\left(đpcm\right)\)

b/ Ta có :

\(A=4+4^2+4^3+........+4^{23}+4^{24}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+.......+\left(4^{22}+4^{23}+4^{24}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+....+4^{22}\left(1+4+4^2\right)\)

\(=4.21+4^4.21+....+4^{22}.21\)

\(=21\left(4+4^4+......+4^{22}\right)⋮21\)

\(\Leftrightarrow A⋮21\left(đpcm\right)\)

6 tháng 6 2018

*A chia hết cho 20 : A có 24 lũy thừa.
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4)
A = 4.5 + 4^3.5 + .....+ 4^23.5
vậy A chia hết cho 5 và 4 nên A chia hết cho 20

*A chia hết cho 21 : A có 24 lũy thừa

Nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2)
A = 4.21 + ......+4^22.21 => A chia hết 21

Vậy A chia hết cho 21.


*A chia hết cho 420 .

Ta có : A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên
A chia hết cho 20.21 = 420 (Áp dụng: Một số đồng thời chia hết cho cả m và n. m và n đồng thời chỉ chia hết cho 1 và chính nó thì số đó chia hết cho tích mxn)

Vậy A chia hết cho 420 .

19 tháng 9 2017

a1. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4\right)+4^2\left(1+4\right)+...+4^{58}\left(1+4\right)\)

A = \(5+4^2.5+...+4^{58}.5\)

A = \(5\left(1+4^2+...+4^{58}\right)⋮5\)

a2. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

A = \(\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\)

A = \(21.\left(1+4^3+...+4^{57}\right)⋮21\)

a3. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2+4^3\right)+4^4\left(1+4+4^2+4^3\right)+...+4^{56}\left(1+4+4^2+4^3\right)\)

A = \(\left(1+4+4^2+4^3\right)\left(1+4^4+...+4^{56}\right)\)

A = \(85.\left(1+4^4+...+4^{56}\right)⋮85\)

Câu B sao thứ tự số mũ chẳng có quy luật vậy, sao mà làm được :v

19 tháng 9 2017

mình đặt tên cho dễ

A=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮5\)

A=(1+4)+4^2(1+4)+.....+4^58(1+4)

A=5+4^2.5+....4^58.5

A=5.(1+4^2+....+4^58) => đcpm

B=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮21\)

B=(1+4+4^2)+.........+(4^57+4^58+4^59)

B= (1+4+4^2)+4^3(1+4+4^2)+.....+4^47(1+4+4^2

B=(1+4+4^2)+1+4^3+.....+4^57)

B=21.(1+4^3+.....+4^57)\(⋮21\Rightarrowđcpm\)

15 tháng 10 2023

nhanh lên các bạn ơi

 

15 tháng 10 2023

D= 1+4+42+43+...+458 +459 ⋮ 21

D= (1+4+42)+(43+44+45)+...(457+458+459)

D= (1+4+42)+43.(1+4+42)+...+457.(1+4+42)

D= 21+43.21+....+457.21 ⋮ 21

=>D= 1+4+42+43+...+458 +459 ⋮ 21

 

29 tháng 10 2020

A = 4 + 42 + 43 + ... + 496

= ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 494 + 495 + 496 )

= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 494( 1 + 4 + 42 )

= 4.21 + 44.21 + ... + 494.21

= 21( 4 + 44 + ... + 494 ) chia hết cho 21 ( đpcm )