Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét số M1=2001
M2=20012001
M3=200120012001
...
M2003=200120012001...2001(có 2003 số 2001)
Đem 2003 số của dãy trên chia cho 2002
Thì có 2002 khả năng dư:0;1;2;3;...;2001
Theo nguyên lí ĐI-RÍC-LÊ tồn tại 2 số có cùng số dư
Khi ấy hiệu của chúng chia hết cho 2002
Gỉa sử 2 số đó là Mx và My (0<y<x<2003)
Ta có : Mx-My=20012001...200100...0
Vậy luôn tồn tại 1 số có dạng 20012001...200100...0 và chia hết cho 2002
gọi 3 số tự nhiên liên tiếp là: a,a+1,a+2(a thuộc N)
=>tổng 3 số đó là:
a+a+1+a+2=3a+3=3.(a+1) chia hết cho 3
vậy tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2
Ta có: a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
Gọi n;n+1;n+2;n+3;n+4 là 5 số tự nhiên liên tiếp
\(.\)Nếu n \(⋮\)5 \(\Rightarrow\)đpcm
\(.\)Nếu n không chia hết cho 5 => n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4
- Với n = 5k + 1 => n + 4 = 5k + 5 \(⋮\)5
- Với n = 5k + 2 => n + 3 = 5k + 5 \(⋮\)5
- Với n = 5k + 3 => n + 2 = 5k + 5 \(⋮\)5
- Với n = 5k + 4 => n + 1 = 5k + 5 \(⋮\)5
Vậy trong 5 số tự nhiên liên tiếp có một số luôn chia hết cho 5
Gọi 5 số tự nhiên liên tiếp là a, a + 1, a+2, a+3,a+4
Ta có:
a+a+1+a+2+a+3+a+4
= ( a+a+a+a+a) + ( 1 + 2 + 3 + 4 )
= 5.a+10
= 5. ( a + 2 ) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Xét dãy 2003 số: 2001;20012001;.........; 2001...2001 trong 2003 số trên sẽ có 2 số đồng dư khi chia 2002
gọi 2 số đó là A = 2001..2001, và B = 2001...2001...
(trong đó A có a số 2001, B có b số 2001 và a> b hay a = b+k)
=> hiệu of chúng chia hết 2002
=> 2001....200100000...0 chia hết 2002..(ko số 2001 và b số 0)