Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đã biết ba số tự nhiên lẻ liên tiếp là: 3,5,7. Ta chứng minh bộ ba này là duy nhất.
Thật vậy, giả sử có ba số nguyên tố lẻ liên tiếp nhau là: a;a+2;a+4.
Vì a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3. Vậy a có dạng: a = 3k+1; 3k+2 (k ∈ N)
+ Nếu a = 3k+1 thì a+2 = 3k+3 > 3 và chia hết cho 3 => Hợp số.
+ Nếu a = 3k+2 thì a + 4 = 3k+6 > 3 và chia hết cho 3 => Hợp số.
=>Điều giả sử sai. Vậy có duy nhất bộ ba số tự nhiên lẻ liên tiếp là số nguyên tố
Gọi 2k+1,2k+3,2k+52k+1,2k+3,2k+5 là 3 số tự nhiên lẻ liên tiếp
+) Nếu kk chia hết cho 3 →2k+3→2k+3 chia hết cho 3
+) Nếu kk chia 3 dư 1 →2k+1→2k+1 chia hết cho 3
+) Nếu kk chia 3 dư 2 →2k+5→2k+5 chia hết cho 3
→→ 3 tự nhiên lẻ tiên tiếp luôn tồn tại 1 số chia hết cho 3
→→ Nếu k=1→3,5,7k=1→3,5,7 là số nguyên tố
+)Nếu k>1→2k+1,2k+3,2k+5k>1→2k+1,2k+3,2k+5 là 3 số tự nhiên lớn hơn 3 do trong 3 số luôn tồn tại 1 số chia hết cho 3 suy ra số đó là hợp số →k>1→k>1 không có bộ 3 số nào thỏa mãn đề
Gọi 3 số tự nhiên lẻ liên tiếp là : p ; p+2 ; p+4
Với p=2 => p+2=4
Vì 4 là hợp số nên p là số nguyên tố khác 2
Với p=3 => p+2=5 => p+4=7
Vì 3, 5 và 7 là các số nguyên tố
=> 3, 5 và 7 là bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
p lớn hơn hoặc bằng 3 => p bằng 3k+1 hoặc 3k+2 (k là số tự nhiên khác 0)
Với p=3k+1 => p+2=3k+3 chia hết cho 3 (là hợp số nên loại)
Với p=3k+2 => p+4=3k+6 chia hết cho 3 (là hợp số nên loại)
=> Chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
Vậy chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố.
Chúc bạn học tốt!
#Huyền#
Giả sử p ; p+4 ; p+8 là ba số nguyên tố.
Ta thấy p \(\ne\) 2, vì nếu p = 2 thì p + 4 = 6 và p+ 8 = 10 là hợp số.
Xét p = 3 thì 3; 17; 11 là bộ ba số nguyên tố mà hiệu của ba số liên tiếp bằng 4.
Xét p > 3 thì p có dạng 3k+1 hoặc 3k+2 (k \(\in\) N) [kiến thức về số nguyên tố lớn hơn 3]
Loại p = 3k + 1 vì khi đó p + 8 = 3k + 1 + 8 = 3k + 8 = 3k + 3.3 = 3.(k+3) chia hết cho 3, là hợp số.
Loại p = 3k + 2 vì khi đó p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3.2 = 3.(k + 2) chia hết cho 3, là hợp số.
Vậy chỉ có duy nhất bộ ba số nguyên tố 3; 7; 11 thỏa mãn đề bài.
Suy ra điều phải chứng minh.
Bạn hỏi câu này, mọi người và O-l-M chọn câu trả lời của mình đi mà để mình còn có hứng giải tiếp !