Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9991 = 31 . 29
b) 899 = 103 . 97
Lời giải bạn xem tại đây nhé :
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bài giải:
a) 9991 = 10000 - 9 = 1002 - 32 = ( 100 - 3 ).(100 + 3) = 97.103
b) 899 = 900 - 1 = 302 - 12 = ( 30 - 1 ) . ( 30 + 1 ) = 29.31
Học tốt
a) Ta có :
\(889=900-1\)
\(=30^2-1\)
\(=\left(30+1\right)\left(30-1\right)\)
\(=31.29\)
b) \(9991=10000-9\)
\(=100^2-3^2\)
\(=\left(100+3\right)\left(100-3\right)\)
\(=103.97\)
B3.
a) =\(\frac{\left(63+47\right).\left(63-47\right)}{\left(215+105\right).\left(215-105\right)}\) b) =\(\frac{\left(437+363\right).\left(437-363\right)}{\left(537+463\right).\left(537-463\right)}\)
=\(\frac{110.16}{320.110}\) =\(\frac{800.74}{1000.74}\)
=\(\frac{1}{20}\) =\(\frac{4}{5}\)
Gọi dạng tổng quát của mọi số tự nhiên là b \(\left(b\inℕ\right)\)
Ta có: \(b^3-b=b\left(b^2-1\right)=b\left(b+1\right)\left(b-1\right)\)
Tích 3 số nguyên liên tiếp có ít nhất một số chẵn và một số chia hết cho 3 nên chia hết cho 6 => \(b^3-b⋮6\)
=> \(b^3-b=-6c\left(c\inℤ\right)\Rightarrow b=b^3+6c\)
Vậy mọi số tự nhiên đều được viết dưới dạng b3 + 6c trong đó b và c là các số nguyên.
Ta có: \(b^3+6c=b.b.b+\left(c+c+c+c+c+c\right)\)
Với \(b>c\Rightarrow c=\frac{1}{2}b\)
Với \(b< c\Rightarrow b=\frac{1}{2}c\)
- Không thể xảy ra trường hợp b=c
=> đpcm
a)\(3599=3600-1=60^2-1^2=\left(60-1\right).\left(60+1\right)=59.61\)
b)\(899=900-1=30^2-1^2=\left(30-1\right).\left(30+1\right)=29.31\)
c)\(9991=10000-9=100^2-3^2=\left(100-3\right)\left(100+3\right)=97.103\)