Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt ƯCLN (4n+5; 2n+2) = d
\(\left\{{}\begin{matrix}4n+5⋮d\\2n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+5⋮d\\4n+4⋮d\end{matrix}\right.\Rightarrow1⋮d\Rightarrow d=1\)
⇒ ƯCLN (4n+5; 2n+2)=1
Vậy
Chứng mình rằng 4n+5 và 2n+2 là 2 số nguyên tố cùng nhau :
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Gọi d=ƯCLN(2n+9,4n+19)
\(\Rightarrow\left\{{}\begin{matrix}2n+9⋮d\\4n+19⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+18⋮d\\4n+19⋮d\end{matrix}\right.\\ \Rightarrow4n+19-4n-18⋮d\\ \Rightarrow1⋮d\Rightarrow d=1\)
Vậy ƯCLN(2n+9,4n+19)=1 hay 2 số trên ntcn
1.a) goi d la uoc chung cua 2n+1 va 2n+3
Suy ra 2n+1 chia het cho d va 2n+3 chia het cho d
Suy ra (2n+3)-(2n+1) chia het cho d
Suy ra 2 chia het cho d
MA d la uoc cua mot so le nen d=1
VAy 2n+1 va 2n+3 la so nguyen to cung nhau.
b) Goi d la uoc chung cua 2n+5 va 3n+7
Suy ra 2n+5 chia het cho d va 3n+7 chia het cho d
Suy ra 3(2n+5)-2(3n+7) chia het cho d
Suy ra 6n+15-6n-14 chia het cho d
Suy ra 1 chia het cho d
Suy ra d=1
Vay 2n+5 va 3n+7 la so nguyen to cung nhau.
Cau 2)
Vi 2n+1 luon luon chia het cho 2n+1
Suy ra 2(2n+1) chia het cho 2n+1
Suy ra 4n+2 chia het cho 2n+1(1)
Gia su 4n+3 chia het cho 2n+1 (2)
Tu (1) va (2) suy ra (4n+3)-(4n+2) chia het cho 2n+1
suy ra 1 chia het cho 2n+1
suy ra 2n+1 =1
2n=0
n=0
Vay n=0 thi 4n+3 chia het cho 2n+1.
Gọi d là ƯCLN(2n+5;4n+12)
Ta có: 2n+5 chia hết cho d => 4n+10 chia hết cho d
4n+12 chia hết cho d
=> (4n+12)-(4n+10) chia hết cho d
=> 2 chia hết cho d
=> d thuộc Ư(2)={1;2}
=> d={1;2}
Mà xét 2n+5 là lẻ và 4n+12 là số chẵn => d=1
=> 2n+5 và 4n+12 là 2 số nguyên tố cùng nhau
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
Gọi d là ƯCLN(4n + 5; 2n + 2)
⇒ (4n + 5) ⋮ d
(2n + 2) ⋮ d ⇒ 2(2n + 2) ⋮ d ⇒ (4n + 4) ⋮ d
⇒ [(4n + 5) - (4n + 4)] ⋮ d
⇒ (4n + 5 - 4n - 4) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 5 và 2n + 2 là: d
Ta có: 4n + 5 ⋮ d
2n + 2 ⋮ d
⇒ 2.(2n+ 2) ⋮ d ⇒ 4n + 4 ⋮ d
⇒ 4n + 5 - (4n + 4) ⋮ d
4n + 5 - 4n - 4 ⋮ d
1 ⋮ d ⇒ d = 1
Ước chung lớn nhất của 4n + 5 và 2n + 2 là 1
Hay 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau