K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

ta co 10000000-10+1=10002-9=10002-32 sau đó áp dụng hằng đẳng thức rồi tinh ban nghe

8 tháng 1 2017

trong sách VŨ HỮU BÌNH BẠN ơi!

4 tháng 8 2017

1)

a) ta có : \(999991=1000000-9=1000^2-3^2\)

\(\Rightarrow999991=\left(1000-3\right)\left(1000+3\right)\)

\(\Rightarrow999991=997.1003\)

Nên \(999991⋮997\)\(999991⋮1003\)

=> 999991 là hợp số .

b) ta có : \(1000027=1000000+27=100^3+3^3\)

\(\Rightarrow1000027=\left(100+3\right)\left(100^2+300+9\right)\)

\(\Rightarrow100027=103.10309\)

\(\Rightarrow1000027⋮103\)\(1000027⋮10309\)

Vậy 1000027 là hợp số

tik mik nha !!!

6 tháng 8 2016

b1

a. 999991=17.59.997

Vay 999991 co nhju hon 2 uoc nen 999991 la hop so

b.1000027=7.19.73.103

Vay 1000027 cug nhju hon 2 uoc nen 1000027 cung la hop so

B2

a. Su dung hang dang thuc thu nhứt

b. su dung hang dang thuc thu sáu.

Hai cau con lai hong p, jai ra daj dog lem.

k mk đi rùi mk giải cho

9 tháng 8 2016

giải đi rồi mình kick cho =='

https://h.vn/hoi-dap/question/21757.html

bn vào link này là có nhé

10 tháng 12 2018

Ta có: a2 + c2 = b2 + d2

( a2 + c2 ) - ( b2 + d2 ) = 0

( a2 + 2ac + c2 ) - ( b2 + 2bd + d2 ) = 2ac - 2bd

( a + c )2 - ( b + d )2 = 2( ac - bd )

a + c \(\equiv\) b + d ( mod 2 )

a + c + b + d \(⋮\) 2

Mà a + c + b + d > 2

Vậy a + b + c + d là hợp số

28 tháng 8 2020

Bài làm:

a) Ta có: \(4^{10}-1=\left(4^5-1\right)\left(4^5+1\right)\) là hợp số

b) Ta có: \(2^{50}+1\)

\(=\left(2^{25}\right)^2+2.2^{25}+1-2^{26}\)

\(=\left(2^{25}+1\right)^2-\left(2^{13}\right)^2\)

\(=\left(2^{25}-2^{13}+1\right)\left(2^{25}+2^{13}+1\right)\) là hợp số

=> đpcm

7 tháng 2 2018

Gọi \(ƯCLN\left(a,b\right)=k\)

\(\Rightarrow\hept{\begin{cases}a=a1.k\\b=b1.k\end{cases}}\)          \(ƯCLN\left(a1;b1\right)=1\)

Vì \(ac=bd\Rightarrow a1.k.c=b1.k.d\Rightarrow a1.c=b1.d\left(1\right)\)\(\Rightarrow a1.c⋮b1\)mà \(ƯCLN\left(a1;b1\right)=1\)\(\Rightarrow c⋮b1\Rightarrow c=b1.m\left(2\right)\)

Thay (2) vào (1).Ta có:

\(b1.m.a1=b1.d\Rightarrow a1.m=d\)

Vậy \(a+b+c+d=b1.m+a1.m+k.a1+k.b1\)

\(=\left(a1+b1\right)\left(k+m\right)\)

Mà a1; b1; k; m là số nguyên dương nên \(\left(a1+b1\right)\left(k+m\right)\)là hợp số. Vậy a+b+c+d là hợp số.

8 tháng 2 2018

Ta có:

\(a=\frac{bd}{c};b=\frac{ac}{d};c=\frac{bd}{a};d=\frac{ac}{b}\)

\(\Rightarrow\frac{bd}{c}+\frac{bd}{a}+\frac{ac}{b}+\frac{ac}{d}\)

\(=bd\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)

\(=ac\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)( Vì ac = bd )

\(=ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)

Khi đó: \(ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)chia hết cho a,c,ac,1

=> a + b + c + d là hợp số

Vậy a + b + c + d là hợp số.

a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)

=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2

mà a2+b2+c2+d2 \(\ge\)0

=> a+b+c+d \(⋮\)2

hay a+b+c+d là hợp số

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932

2 tháng 6 2019

P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )

Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3

Xét 4 số a,b,c,d khi chia cho 4

- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4

- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3

có hiệu chia hết cho 2. do đó P chia hết cho 4

2 tháng 6 2019

#)Giải : 

Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3

Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4 

Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ 

Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2 

=> Tích trên chia hết cho 3 và 4 

Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12 

                           #~Will~be~Pens~#