Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
a ) gọi 2 số lẻ liên tiếp là : n + 1 ; n + 3
Ta có : ƯCLN ( n + 1 ; n + 3 ) = 1
Vậy 2 số lẻ liên tiếp là nguyên tố cùng nhau
Câu b tương tự
a, gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
a ,Gọi 2 số lẻ là 2k+1 ; 2k+2
Gọi Ư CNN 2k+1 và 2k+3 là d
ta có :
2k+3-2k+1=2
d thuộc ƯC (2) ={1;2}
Mà d không thể bằng 2 vì 2k+1 và 2k+3 là số lẻ
Vậy d = 1
b,Gọi ƯCNN 2n+5và 3n+7 là d
ta có :
3 .( 2n + 5 )chia hết cho d. =6n+15 chia hết cho d
2.( 3n +7 )chia hết cho d.= 6n+14chia hết cho d
(6n + 15 ) - ( 6n + 14 ) = 6n +15 - 6n -14 =1
d thuộc ƯC (1 ) ={1}
Vậy 2n + 5 và 3n+ 7là 2 số nguyên tố cùng nhau
1)Gọi 2 số tự nhiên liên tiếp là n và n+1
Đặt ƯCLN(n,n+1)=d
Ta có: n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n,n+1) =1
=>n và n+1 là 2 số nguyên tố cùng nhau
2)Gọi ƯCLN(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a)
Gọi 2 số tự nhiên liên tiếp là n; n+1
Gọi ƯCLN ( n;n+1) la d
=> n chia hết cho d; n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN ( n;n+1) =1
=> hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
b)
Gọi ƯCLN( 2n+5;3n+7) la d
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> 6n+15-(6n+14) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN( 2n+5;3n+7)=1
=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau
tớ chỉ làm mẫu 1 câu thôi nhé, lười lắm
gọi 1 số là a, số kia là a+1
gọi ước chung lỡn nhất của 2 số đó là d
=> a chia hết cho d
a+1 chia hết cho d
=> a+1-a chia hết cho d
=> 1 chia hết cho d
d thuộc ước của 1 , d=1
=> 2 số đó nguyên tố cùng nhau, ok?
b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)
Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)
3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2)
Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
a ) gọi STN 1 : n ; STN 2 : n+1
Gọi d \(\in\)ƯC (n, n + 1) \(\Rightarrow\)(n + 1) - n \(⋮\)d \(\Rightarrow\)d = 1. Vậy n và n + 1 là hai số nguyên tố cùng nhau.
b ) Câu hỏi của Vũ Ngô Quỳnh Anh - Toán lớp 6 - Học toán với Online Math