Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN (12n+1;30n+2) = d ( d thuộc N sao )
=> 12n+1 và 30n+2 đều chia hết cho d
=> 5.(12n+1) và 2.(30n+2) đều chia hết cho d
=> 60n+5 và 60n+4 đều chia hết cho d
=> 60n+5-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1 ( vì d thuộc N sao )
=> ƯCLN (12n+1;30n+2) = 1
=> phân số 12n+1/30n+2 là phân số tối giản
Tk mk nha
Gọi d là ước chung lớn nhất của 12n+1 và 30n+2
Khi đó \(12n+1⋮d\Rightarrow5.\left(12n+1\right)⋮d\Rightarrow60n+5⋮d\)
\(30n+2⋮d\Rightarrow2.\left(30n+2\right)⋮d\Rightarrow60n+4⋮d\)
Do đó \(60n+5-60n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)( vì d là số nguyên tố )
Khi đó ƯCLN(12n+1;30n+2)=1 hay \(\frac{12n+1}{30n+2}\)là phân số tối giản
a) Gọi d là ƯCLN của 12n+1/30n+2, ta có
12n+1 chia hết cho d và 30n+2 chia hết cho d, ta có
(12n+1)-(30n+2) chia hết cho d
=> 5(12n+1)-2(30n+20 chia hết cho d
60n+5-60n-4 chia hết cho d
60n-60n+5-4 chia hết cho d
1 chia hết cho d => d=1 hay ƯCLN của 12n+1 và 30n+2
Vậy 12n+1/30n+2 là phân số tối giản
câu b tương tự
đúng mình cái
a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
Gọi (12n+1,30n+2)=d
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d (1)
30n+2 chia hết cho d => 2(30n+2) chia hết cho d (2)
Từ (1) và (2) => 5(12n+1) - 2(30n+2) chia hết cho d
60n+5 - 60n+4 chia hết cho d
1 chia hết cho d
=> d=1
=> 12n+1/30n+2 là phân số tối giản
Phần tiếp theo tương tự
minh kho biet