\(A=x\left(x-6\right)+10...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

+) ta có : \(A=x\left(x-6\right)+10=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1>0\forall x\) \(\Rightarrow\) (đpcm)

+) ta có : \(B=x^2-2x+9y^2-6y+3=x^2-2x+1+9y^2-6y+1+1\)

\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1>0\forall x;y\) \(\Rightarrow\) (đpcm)

23 tháng 8 2018

thankshaha

19 tháng 6 2016

\(A=x\left(x-6\right)+10=x^2-6x+10\)

   \(=\left(x-3\right)^2+1>0\) với mọi x

\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

    \(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y

2 tháng 8 2017

ta có

B=(x^2-2x+1)+[(3y)^2-6y+1]+1

B=(x-1)^2+(3y-1)^2+1

Mả (x-1)^2+(3y_1)^2 luôn luôn >=0

Vậy B mìn =1khi và chỉ khi x=1 va y=1/3

2 tháng 8 2017

À không cần min bạn nhé. Dù sao cũng cảm ơn.

18 tháng 6 2015

A = x^2 - 2x.7/2 + 49 / 4 +3/4 =(x - 7/2)^ 2 +3/4 >0

B, Phá ngoặc sau làm tuwowg tự

C dua ve hằng đẳng thức

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

9 tháng 8 2017

A= x^2-6x+10

A=x^2-3x-3x+9+1

A=x(x-3)-3(x-3)+1

A=(x-3)(x-3)+1

A=(x-3)^2+1

Vì (x-3)^2 \(\ge\)0\(\forall x\)

->(x-3)^2+1\(\ge\)1

=>ĐPCM

16 tháng 7 2020

1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)

hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )

b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)

hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )

24 tháng 6 2017

Phân thức đại số

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)

\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)

                 \(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)

15 tháng 8 2019

a, TA CO X -3X+3=X2-3X+(3/2)2 +3/4=(X-3/2)2+3/4 >0

TUONG TU

25 tháng 5 2017

A = x(x - 6) + 10

A = x2 - 6x + 10

A = x2 - 2.3.x + 32 + 1

A = (x - 3)2 + 1 \(\ge1\)

=> A luôn dương

25 tháng 5 2017

Bạn Kurosaki Akatsu làm ý a đúng rồi đấy!

B = x2 - 2x + 9y2 - 6y + 3

   = (x2 - 2x + 1) + (9y2 - 6y + 1) + 1

   = (x - 1)2 +  [ (3y)2 - 2.3y.1 + 12)] + 1

   = (x - 1)2 + (3y - 1)2 + 1

Vì (x - 1)2 và (3y - 1)luôn lớn hơn hoặc bằng 0 với mọi x, y

=> (x - 1)2 + (3y - 1)2 + 1 > 0 với mọi xy

  Vậy biểu thức luôn dương

   

22 tháng 9 2019

a) \(x^2-5x+10\)

\(=x^2-2.\frac{5}{2}x+\frac{25}{4}+\frac{15}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)

b) \(2x^2+8x+10\)

\(=2\left(x^2+4x+4+1\right)\)

\(=2\left[\left(x+2\right)^2+1\right]\ge2>0\)

22 tháng 9 2019

c) thay x = 1 vào thì đề sai

d) \(\left(x+5\right)\left(x-3\right)+20=x^2+2x+5\)

\(=\left(x+1\right)^2+4\ge0>0\)