Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
2007^2009 có tận cùng là: 2009:4 dư 1 => 2007^2009 tận cùng là 7
2013^1999 có tận cùng là: 1999:4 dư 3 => 2013^1999 tận cùng là 7
=> 2007^2009 - 2013^1999 chia hết cho 10 và là 1 so thực
=> N=0,7.10.k=7k là 1 số nguyên
1. Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)
Thay vào 2 vế là sẽ CM được
1. Đặt \(\frac{a}{b}=\frac{c}{d}=k>a=bk.c=dk\)
Thay vào 2 vế để chứng minh
- Theo bài ra, ta có: \(C=0,7.\left(83^{83}-37^{37}\right)\)
\(\Rightarrow C=\frac{7}{10}.\left(83^{83}-37^{37}\right)\)
\(\Rightarrow C=\frac{7\left(83^{83}-37^{37}\right)}{10}\)
- Ta có: \(+)83^{83}=83^{80}.83^3=\left(83^4\right)^{20}.83^3=(\overline{...1})^{20}.\overline{...7}=\overline{...1}.\overline{...7}=\overline{...7}\)
\(+)37^{37}=37^{36}.37=\left(37^4\right)^9.37=\left(\overline{...1}\right)^9.37=\overline{...1}.37=\overline{...7}\)
Suy ra \(83^{83}-37^{37}=\overline{...7}-\overline{...7}=\overline{...0}⋮10\)
\(\Rightarrow7\left(83^{83}-37^{37}\right)⋮10\)
\(\Rightarrow\frac{7\left(83^{83}-37^{37}\right)}{10}\in Z\)
hay \(C\in Z\)
Vậy \(C=0,7.\left(83^{83}-37^{37}\right)\) là 1 số nguyên.
Ta có:C=\(0,7.\left(83^{83}-37^{37}\right)=\frac{7}{10}.\left(83^{83}-37^{37}\right)\)
\(=\frac{7.\left(83^{83}-37^{37}\right)}{10}\)
Đặt \(M=83^{83}-37^{37}\)
Ta lại có:\(83^{83}=83^{80}.83^3=\left(83^4\right)^{20}.\left(...7\right)=\left(...1\right)^{20}.\left(...7\right)=\left(...1\right).\left(...7\right)=\left(...7\right)\)
\(37^{37}=37^{36}.37=\left(37^4\right)^9.37=\left(...1\right)^9.37=\left(...1\right).37=\left(...7\right)\)
Thay vào M,ta được:\(M=\left(...7\right)-\left(...7\right)=\left(...0\right)⋮10\)
\(\Rightarrow7.\left(83^{83}-37^{37}\right)⋮10\)
\(\Rightarrow\frac{7.\left(83^{83}-37^{37}\right)}{10}⋮10\)
\(\Rightarrow C⋮10\)
\(\Rightarrow C=0,7.\left(83^{83}-37^{37}\right)\) là 1 số nguyên.