\(A=x^2-7x+13\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

\(A=x^2-4x-x\left(x-4\right)-15\)

\(=x^2-4x-x^2+4x-15=-15\)   =>  đpcm

\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)

\(=5x^3-5x^2-5x^3+5x^2-13=-13\)   =>   đpcm

\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)

\(=-3x^2+15x+3x^2-12x-3x+7=7\)   =>   đpcm

29 tháng 8 2018

\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)

\(=7x^2-35x+21-7x^2+35x-14=7\)  =>   đpcm

\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)

\(=4x^3-20x-4x^3+20x+20=20\)    =>    đpcm

\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) =>   đpcm

25 tháng 7 2020

a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

25 tháng 7 2020

c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x

= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)

= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2

= 0 (đpcm)

\(x^2-\left(y-3\right)^2-4x+4\)

\(=x^2-\left(y^2-6y+9\right)-4x+4\)

\(=x^2-y^2+6y-9-4x+4\)

\(=\left(x^2-4x+4\right)-\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2-\left(y-3\right)^2\)

\(=\left[\left(x-2\right)-\left(y-3\right)\right]\left[\left(x-2\right)+\left(y-3\right)\right]\)

\(=\left(x-y+5\right)\left(x+y-5\right)\)

8 tháng 10 2020

1.

x2 - ( y - 3 )2 - 4x + 4

= ( x2 - 4x + 4 ) - ( y - 3 )2

= ( x - 2 )2 - ( y - 3 )2

= [ ( x - 2 ) - ( y - 3 ) ][ ( x - 2 ) + ( y - 3 ) ]

= ( x - 2 - y + 3 )( x - 2 + y - 3 )

= ( x - y + 1 )( x + y - 5 )

2.

a) Ta có : 2x4 + 8x3 + 9x2 - 4x - 5

= 2x4 + 10x2 - x2 + 8x3 - 4x - 5

= ( 2x4 - x2 ) + ( 8x3 - 4x ) + ( 10x2 - 5 )

= x2( 2x2 - 1 ) + 4x( 2x2 - 1 ) + 5( 2x2 - 1 )

= ( 2x2 - 1 )( x2 + 4x + 5 )

=>(2x4 + 8x3 + 9x2 - 4x - 5) : ( 2x2 - 1 ) = x2 + 4x + 5

b) Ta có : x2 + 4x + 5 = ( x2 + 4x + 4 ) + 1 = ( x + 2 )2 + 1 ≥ 1 > 0 ∀ x

=> đpcm

24 tháng 10 2022

a: \(M=2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]-3\left[\left(a+b\right)^2-2ab\right]\)

\(=2\left(1-3ab\right)-3\left(1-2ab\right)\)

\(=2-6ab-3+6ab=-1\)

b: \(4x^4+2x^2+a⋮x-2\)

\(\Leftrightarrow4x^4-8x^3+8x^3-16x^2+14x^2-56+a+56⋮x-2\)

=>a+56=0

=>a=-56

c: \(A=x^2+8x+16+4y^2+4y+1-34\)

\(=\left(x+4\right)^2+\left(2y+1\right)^2-34>=-34\)

Dấu = xảy ra khi x=-4 và y=-1/2

d: \(\left(x+1\right)\left(2-x\right)-\left(3x+5\right)\left(x+2\right)=-4x^2+2\)

\(\Leftrightarrow2x-x^2+2-x-3x^2-6x-5x-10=-4x^2+2\)

=>-4x^2-10x-8=-4x^2+2

=>-10x=10

=>x=-1

x^2-5x-3=0

\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-3\right)=25+12=37\)>0

=>PT có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5-\sqrt{37}}{2}\\x_2=\dfrac{5+\sqrt{37}}{2}\end{matrix}\right.\)

e: \(\left(a-b\right)^2+4ab\)

\(=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

3 tháng 7 2017

1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)

=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)

=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)

=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)

Ta thấy: \((5x-2)^2\ge0\)

=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)

2. \(f\left(x\right)=4x^2-28x+50\)

=> \(f\left(x\right)=(4x^2-28x+49)+1\)

=> \(f\left(x\right)=(2x-7)^2+1\)

Ta thấy: \((2x-7)^2\ge0\)

=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)

3. \(f\left(x\right)=-16x^2+72x-82\)

=> \(f\left(x\right)=-(16x^2-72x+82)\)

=> \(f\left(x\right)=-(16x^2-72x+81+1)\)

=> \(f\left(x\right)=-[(4x-9)^2+1]\)

Ta thấy: \((4x-9)^2\ge0\)

=> \((4x-9)^2+1\ge1>0\)

=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)

5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)

=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)

=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)

Ta thấy: \((2x-3)^2\ge0\)

\((3y+1)^2\ge0\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)

14 tháng 2 2020

a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)

=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)

=\(\frac{1}{3y}.\frac{x}{2}\)

=\(\frac{x}{6y}\)

b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)

=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)

=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)

=\(\frac{-10}{3y^2}\)

c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)

=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)

=\(\frac{3x+3}{x-1}\)

d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)

=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)

=\(\frac{-4}{x^2}\)

e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)

=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)

=\(-\frac{2x^2+2x+2}{2x+3y}\)

14 tháng 2 2020

Phần C thiếu x3 , chỗ (x-1)

8 tháng 1 2022

mk mới lớp 5 nên ko bt

\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)

                 \(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)

15 tháng 8 2019

a, TA CO X -3X+3=X2-3X+(3/2)2 +3/4=(X-3/2)2+3/4 >0

TUONG TU