Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\text{x^2-8x+25 }\)
\(\text{= (x^2-8x+16)+9 }\)
\(\text{=(x-4)^2+9 lớn hơn hoặc bằng 0 với mọi x}\)
\(\Rightarrow\)Biểu thức này luôn dương
b) \(4y^2-12y+11\)
\(=\left(4y^2-12y+9\right)+3\)
\(=\left(2y-3\right)^2+3\)lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow\)Biểu thức này luôn dương
a) x2-8x+16+9
=(x-4)2+9 lớn hơn 0
b) 4y2-12y+9+2
=(2y-3)2+2 lớn hơn 0
Ta tách như sau: \(2x^2+8x+15=2\left(x^2+4x+4\right)+7=2\left(x+2\right)^2+7\)
Do \(\left(x+2\right)^2\ge0\Rightarrow2\left(x+2\right)^2+7\ge7>0\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của biến.
x^2-8x+20=(x^2-8x+16)+4
=(x-4)^2+4>0(vì (x-4)^2>=0)
4x^2-12x+11=4x^2-12x+9+2
=(2x-3)^2+2>0
x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>0
x^2-2x+y^2+4y+6
=x^2-2x+1+y^2+4y+4+1
=(x-1)^2+(y+2)^2+1>0
a: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(4x^2-12x+11\)
\(=4x^2-12x+9+2\)
\(=\left(2x-3\right)^2+2>0\forall x\)
c: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d: Ta có: \(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
\(P=16x^2+8x+2=\left(16x^2+8x+1\right)+1=\left(4x+1\right)^2+1\)
Do \(\left\{{}\begin{matrix}\left(4x+1\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow P=\left(4x+1\right)^2+1>0;\forall x\) (đpcm)
\(4x^2-8x+5=\left(2x\right)^2-2.2.2x+4+1=\left(2x-1\right)^2+1>0\)(luon duong)
\(4x^2-8x+5\)
\(=\left(2x\right)^2-2×2×2x+1+4\)
\(=\left(2x-1\right)^2+1\)
\(\Rightarrow\left(2x-1\right)^2+1>0\)
Vậy biểu thức trên luôn dương !!!
Ta có : C = 4x2 + 4y2 - 8x + 4y + 427
=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422
=> C = (2x - 2)2 + (2y + 1)2 + 422
Mà \(\left(2x-2\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall x\)
Nên C = (2x - 2)2 + (2y + 1)2 + 422 \(\ge422\forall x\)
Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)
Vậy C luôn luôn dương (đpcm)
\(f,F=x^2+9y^2-8x+4y+27\) (sửa đề)
\(=\left(x^2-8x+16\right)+\left(9y^2+4y+\dfrac{4}{9}\right)+\dfrac{95}{9}\)
\(=\left(x^2-2\cdot x\cdot4+4^2\right)+\left[\left(3y\right)^2+2\cdot3y\cdot\dfrac{2}{3}+\left(\dfrac{2}{3}\right)^2\right]+\dfrac{95}{9}\)
\(=\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\)
Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)
\(\left(3y+\dfrac{2}{3}\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\ge\dfrac{95}{9}>0\forall x;y\)
hay \(F\) luôn dương với mọi \(x;y\).
\(Toru\)
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
x^2-8x+25=(x^2-2.4.x+16)+9=(x-4)^2+9
vì (x-4)^2 luôn lớn hơn 0và9>0=>biểu thức trên lớn hơn 0
k nhan