Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(111...1222...2=111...1.10^n+2x111...1\) (Mỗi số hạng có n chữ số 1)
Đặt \(111...1=a\) (n chữ số 1) \(\Rightarrow a=9a+1\)
\(\Rightarrow111...1222...2=111...1\left(10^n+2\right)=a\left(9a+1+2\right)=3a\left(3a+1\right)\)(dpcm)
Xin lỗi
Đặt \(111...1=a\Rightarrow10^n=9a+1\)
\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)
\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x
3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2
Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)
Tương tự ta có b^2-a^2=n
Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn
Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1
Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)
Từ (1) và (2)=> n chia hết cho 40
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
Bài 2 Chứng minh : A.B + 1 là số chính phương với
a/ A =11...1 và B =100...05 (có n chữ số 1 và n-1 chữ số 0)
Lời giải:
Thấy A = 1111 … 11 và B = 100…005
Nên: A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B
Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2
b/ A = 11...12 và B =11...14 (có n chữ số 1)
Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2
Bài 3 Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.
Chứng minh rằng: (A + B + C + 8) là số chính phương
Lời giải: - Với n =1 Thì A = 11, B = 11, C = 6 Nên A + B + C + 8 = 36 = 62
- Với n = 2 Thì A = 1111, B = 111, C = 66 Nên A + B + C + 8 = 1296 = 362
- Với n = 3 Thì A = 111111, B = 1111, C = 666 Nên A + B + C + 8 = 112896 = 3362
- Trường hợp tổng quát, n>3
Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.
Cộng dọc, viết ngay ngắn các bạn dễ thấy:
S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, có n-2 chữ số 8, một chữ số 9 và một chữ số 6
(Với n là số tự nhiên, n>2)
Ta có S = 111…12888…896 = 111…12888…87 + 9 = 333…33x333…39 + 9 =
= 333…33x(333…33 + 6) + 9 =
= 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362
(Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 )
Bài 4 Chứng minh số \(\frac{1}{3}.\left(111...11-333...3300...00\right)\) là lập phương của 1 số tự nhiên
( n chữ số 1, n chữ số 3, n chữ số 0)
Lời giải : Số đã cho là một số âm nên nó không thể bằng lập phương của một số tự nhiên. (Bạn xem lại đề ra đi nhé)
Bài 5: Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước:
Vd: 16 => 1156 => 111556 => 11115556 =>...
Chứng minh mọi số hạng của dãy đều là số chính phương.
Bài 2 Chứng minh : A.B + 1 là số chính phương với
a/ A =11...1 và B =100...05 (có n chữ số 1 và n-1 chữ số 0)
Lời giải:
Thấy A = 1111 … 11 và B = 100…005
Nên: A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B
Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2
b/ A = 11...12 và B =11...14 (có n chữ số 1)
Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2
Bài 3 Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.
Chứng minh rằng: (A + B + C + 8) là số chính phương
Lời giải: - Với n =1 Thì A = 11, B = 11, C = 6 Nên A + B + C + 8 = 36 = 62
- Với n = 2 Thì A = 1111, B = 111, C = 66 Nên A + B + C + 8 = 1296 = 362
- Với n = 3 Thì A = 111111, B = 1111, C = 666 Nên A + B + C + 8 = 112896 = 3362
- Trường hợp tổng quát, n>3
Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.
Cộng dọc, viết ngay ngắn các bạn dễ thấy:
S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, n-2 chữ số 8, một chữ số 9 và một chữ số 6
(Với n là số tự nhiên, n>2)
Ta có S = 111…12888…896 = 111…12888…87 + 9 = 333…33x333…39 + 9 =
= 333…33x(333…33 + 6) + 9 =
= 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362
(Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 )
Bài 4 Chứng minh số .(11...1-33...300...0) là lập phương của 1 số tự nhiên
( n chữ số 1, n chữ số 3, n chữ số 0)
Bài 5: Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước: Vd: 16 => 1156 => 111556 => 11115556 =>...
Chứng minh mọi số hạng của dãy đều là số chính phương
Lời giải: Ta có hai số hạng đầu của dãy số đó là :
16 = 15 + 1 = 3 . 5 + 1 = 3.(3 + 2) + 1 = 32 + 2.3 + 1 = (3 + 1)2
1156 = 1155 + 1 = 33x35 + 1 = 33x(33 + 2) + 1 = 332 + 2.33 + 1 = (33 + 1)2
Số hạng tổng quát (Có n chữ số 1, có n-1 chữ số 5 và 1 chữ số 6) 111…55…56 Ta biến đổi :
111…1155…56 = 111…1155…55 + 1 =
= 333…33x333…35 + 1 = 333…33x(333..33 + 2) + 1 =
= 333…332 + 2x333…33 + 1 = (333…33 + 1)2 = 333…342
(333…34 Có n-1 chữ số 3 và một chữ số 4)
Chú ý rằng: Tích (Mỗi thừa số có n chữ số. Thừa số thứ nhất có n – 1 chữ số 3 và một chữ số 5 ở hàng đơn vị, thừa số thứ hai có n chữ số 3): 333…35x 333…3 viết dạng nhân dọc :
333…335 (Có n-1 chữ số 3 và một chữ số 5)
x 333... 333
________________
100...005 Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)
100… 005 ( Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)
……………
100…005 (Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)
_______________________
11…1155…555 (Có n chữ số 1 và n chữ số 5)
Chúc bạn Nguyễn Như Quỳ học tập ngày càng giỏi . Bạn tìm đâu ra những bài toán hay đến vậy ?
mọi người giúp mk vs!!!!!