Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)
\(=\left[\dfrac{x^2}{x\left(x-7\right)\left(x+7\right)}-\dfrac{\left(x-7\right)^2}{x\left(x+7\right)\left(x-7\right)}\right].\dfrac{x\left(x+7\right)}{2x-7}+\dfrac{x}{7-x}\)
\(=\left[\dfrac{x^2-\left(x-7\right)^2}{x\left(x-7\right)\left(x+7\right)}\right].\dfrac{x\left(x+7\right)}{2x-7}+\dfrac{x}{7-x}\)
\(=\left[\dfrac{\left(x-x+7\right)\left(x+x-7\right)}{x\left(x-7\right)\left(x+7\right)}\right].\dfrac{x\left(x+7\right)}{2x-7}+\dfrac{x}{7-x}\)
\(=\dfrac{7\left(2x-7\right)}{x\left(x-7\right)\left(x+7\right)}.\dfrac{x\left(x+7\right)}{2x-7}+\dfrac{x}{7-x}\)
\(=\dfrac{7}{x-7}+\dfrac{x}{7-x}\)
\(=\dfrac{7\left(7-x\right)+x\left(x-7\right)}{\left(x-7\right)\left(7-x\right)}=\dfrac{49-7x+x^2-7x}{7x-x^2-49+7x}\)
\(=\dfrac{49-14x+x^2}{14x-x^2-49}=\dfrac{-\left(14-x^2-49\right)}{14x-x^2-49}=-1\)
\(\Rightarrow\)Giá trị biểu thức trên không phụ thuộc vào biến
\(\Rightarrowđpcm\)
b, tương tự
Bạn chỉ cần tính ra thôi .
+ Nếu kết quả rút gọn có x thì kết luận giá trị của biểu thức phụ thuộc vào giá trị của biến .
+ Nếu kết quả rút gọn không có x thì kết luận giá trị của biểu thức không phụ thuộc vào giá trị của biến .
Chúc bạn làm bài tốt nha .
a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)
đkxđ: x khác 3, x khác -3
(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)
=>3x+9 -6x + x2+3x
<=>x2 + 3x-6x+3x + 9
<=>x2 +9
<=>(x-3).(x+3)
a) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)
\(=-\dfrac{9x^2+3x+2x-6x^2}{\left(3x-1\right)\left(3x+1\right)}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=-\dfrac{x\left(3x+5\right)}{\left(3x-1\right)^2}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=\dfrac{-1}{2}\)
b) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(=\left(\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x-9-x^2}{3x\left(x+3\right)}\right)\)
\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{3x\left(x+3\right)}{-x^2+3x-9}\)
\(=\dfrac{x^2-3x+9}{x-3}.\dfrac{3}{-\left(x^2-3x+9\right)}\)
\(=-\dfrac{3}{x-3}\)
a) \(\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\)
ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\2x +3\ne0\\x^2-3x\ne0\\x^2-9\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-\dfrac{3}{2}\\x\ne0\\x\ne\pm3\end{matrix}\right.\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\left(\dfrac{x+3}{x\left(x-3\right)}-\dfrac{x}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{\left(x+3-x\right)\left(x+3+x\right)}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right).3\left(2x+3\right)}{\left(2x+3\right)x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}\)
\(=\dfrac{x-3}{x-3}\)
=1
\(\Rightarrow\) ĐPCM
\(A=\dfrac{x}{x-3}.\dfrac{x^2+3x}{2x+3}\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\)
\(=\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}\left(\dfrac{x+3}{x\left(x-3\right)}-\dfrac{x}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}.\dfrac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{x^2+6x+9-x^2}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{3\left(2x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}\)
\(=\dfrac{x-3}{x-3}=1\) ( đpcm )
b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)
\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)
c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)
\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)
Vì \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\cdot\left(\dfrac{x+3}{x\left(x-3\right)}-\dfrac{x}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\cdot\dfrac{x^2+6x+9-x^2}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{1}{2x+3}\cdot\dfrac{3\left(2x+3\right)}{x-3}\)
\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}=1\)