\(B=\dfrac{4a^2-1}{\left(a-b\right)\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\dfrac{\left(4a^2-1\right)\left(b-c\right)-\left(4b^2-1\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4c^2-1}{\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{4a^2b-4a^2c-b+c-4ab^2+4b^2c+a-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2b-4a^2c+a-b-4ab^2+4b^2c+4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2b-4ab^2-4a^2c+4ac^2-4bc^2+4b^2c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2\left(b-c\right)+4bc\left(b-c\right)-4a\left(b^2-c^2\right)}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2+4bc-4a\left(b+c\right)}{\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2-4ab+4bc-4ac}{\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a\left(a-b\right)-4c\left(a-b\right)}{\left(a-c\right)\left(a-b\right)}=4\)

7 tháng 12 2017

Bài 1:

dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .

Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)

Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)

\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)

P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf

7 tháng 12 2017

Làm sao có thể dự đoán được dấu "=" trong bài này vậy ạ ?

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
ta có \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}=\sqrt{\left(1+a\right)\left(a^2-a+1\right)}.\sqrt{\left(1+b\right)\left(b^2-b+1\right)}\) Mà \(\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\dfrac{a+1+a^2-a+2}{2}=\dfrac{a^2+2}{2}\) Tương tự thì \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}\le\dfrac{\left(a^2+2\right)\left(b^2+2\right)}{4}\Rightarrow\dfrac{a^2}{\sqrt{\left(1+a^3\right)\left(1+B^3\right)}}\ge\dfrac{4a^2}{\left(a^2+2\right)\left(b^2+2\right)}\) ...
Đọc tiếp

ta có \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}=\sqrt{\left(1+a\right)\left(a^2-a+1\right)}.\sqrt{\left(1+b\right)\left(b^2-b+1\right)}\)

\(\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\dfrac{a+1+a^2-a+2}{2}=\dfrac{a^2+2}{2}\)

Tương tự thì \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}\le\dfrac{\left(a^2+2\right)\left(b^2+2\right)}{4}\Rightarrow\dfrac{a^2}{\sqrt{\left(1+a^3\right)\left(1+B^3\right)}}\ge\dfrac{4a^2}{\left(a^2+2\right)\left(b^2+2\right)}\)

=\(\dfrac{4a^2\left(c^2+2\right)}{\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)}\)

Tương tự rồi + vào, ta có

...\(\ge4\dfrac{a^2\left(c^2+2\right)+b^2\left(a^2+2\right)+c^2\left(b^2+2\right)}{\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)}\)

ta cần chứng minh \(3\left[a^2\left(c^2+2\right)+b^2\left(a^2+2\right)+c^2\left(b^2+2\right)\right]\ge\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\)

đến đây nhân tung ra và dùng cô-si tiếp

0
24 tháng 2 2018

• Vì a, b, c đều dương và a + b + c = 2

nên \(0< a,b,c< 2\)

• Theo gt, ta có:

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2-a\\\left(b+c\right)^2-2bc=2-a^2\end{matrix}\right.\)

\(\Rightarrow\left(2-a\right)^2-2+a^2=2bc\)

\(\Rightarrow bc=\dfrac{\left(4-4a+a^2\right)-2+a^2}{2}=\dfrac{2a^2-4a+2}{2}=\left(a-1\right)^2\)

\(\Rightarrow b^2c^2=\left(a-1\right)^4\)

• Ta lại có: \(a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}=a\sqrt{\dfrac{1+b^2+c^2+b^2c^2}{1+a^2}}\)

\(=a\sqrt{\dfrac{3-a^2+\left(a-1\right)^4}{1+a^2}}=a\sqrt{\dfrac{a^4-4a^3+5a^2-4a-4}{1+a^2}}\)

\(=a\sqrt{\dfrac{\left(1+a^2\right)\left(a-2\right)^2}{1+a^2}}=a\left(2-a\right)\)

• Tương tự, ta cũng có: \(b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=b\left(2-b\right)\)

\(c\sqrt{\dfrac{\left(1+b^2\right)\left(1+a^2\right)}{1+c^2}}=c\left(2-c\right)\)

• Suy ra \(a\sqrt{\dfrac{\left(1+a^2\right)\left(a-2\right)^2}{1+a^2}}+b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\dfrac{\left(1+b^2\right)\left(1+a^2\right)}{1+c^2}}\)

\(=2\left(a+b+c\right)-\left(a^2+b^2+c^2\right)=2\left(đpcm\right)\)

NV
20 tháng 1 2019

Nhìn qua đã biết là đề sai rồi bạn

Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay

1 tháng 10 2017

Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)

Dự đoán điểm rơi sẽ có 1 số bằng 0.

Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)

do đó \(ab+bc+ca\ge ab\)\(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)

BDT cần chứng minh tương đương

\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)

BĐT trên hiển nhiên đúng theo AM-GM.

Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )

1 tháng 10 2017

a,b,c không âm