Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2
b) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5
a) A = 2n +1 => A là số lẻ \(\Rightarrow⋮̸\)( không chia hết ) 2
b) A có thể chia hết cho 5 , A có thể không chia hết cho 5
a) Nếu n lẻ => lẻ ( lẻ + lẻ) = lẻ (chẵn) => tích chẵn
Nếu n chẵn => chẵn (chẵn + lẻ) => Tích chẵn
a) + Nếu n lẻ => n+3 = chẵn => n(n+3) = chẵn => n(n+3) chia hết cho 2
+ Nếu n chẵn => n(n+3) chẵn => n(n+3) chia hết cho 2
b) n^2 + n + 1 = n.n+n+1 = n(n+1)+1
Ta thấy: n(n+1) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) có tận cùng là: 0;2;6
=> n(n+1)+1 có tận cùng là: 1;3;7 không chia hết cho 5
=> n^2 + n + 1 ko chia hết cho 5
Ta có:
n2 + n + 1 = n.n + n + 1 = n. (n+1) +1
Mà n.(n+1) là tích của 2 số tự nhiên liên tiếp => Tích là số chẵn=> n.(n+1) là số chẵn
=>n(n+1) + 1 là số lẻ => không chia hết cho 4
n(n+1) là tích của 2 số tự nhiên liên tiếp nên có các chữ số tận cùng là 0;2;6 nên ko có chữ số tận cùng là 4 và 9 => n(n+1) + 1 ko có chữ số tận cùng là 0 hoặc 5 => n(n+1) +1 ko chia hết cho 5
n 2+n+1 = n(n + 1) +1.
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5
Vậy n 2+n+1 không chia hết cho 2 và 5
a) n2+n+1=n(n+1)+1
Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2
- n2+n+1=n(n+1)+1
Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5