\(A=\frac{n^3-1}{n^5+n+1}\) không tối giản

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

gọi (6n+1;8n+1)=d

 =>6n+1 chia hết cho d và 8n+1 chia hết cho d

=>4(6n+1) chia hết cho d và 3(8n+1) chia hết cho d

=>24n+4 chia hết cho d và 24n+3 chia hết cho d

=>(24n+4)-(24n+3) chia hết cho d

=>1 chia hết cho d hay d=1

Vậy (6n+1;8n+1)=1 => B tối giản

22 tháng 11 2016

\(A=\frac{n^3-1}{n^5+n+1}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^5-n^2+\left(n^2+n+1\right)}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left(n^3-n^2+1\right)}\)

bn xem lại đề xemđề có cho n nguyên dương ko nhé,chắc phải có thêm đk đó nữa mới CM n2+n+1 > 1 nên A không tối giản

9 tháng 11 2016

a)Gọi \(UCLN\left(6n+1;8n+1\right)=d\)

Ta có:

\(\left[4\left(6n+1\right)\right]-\left[3\left(8n+1\right)\right]⋮d\)

\(\Rightarrow\left[24n+4\right]-\left[24n+3\right]⋮d\)

\(\Rightarrow1⋮d\).Suy ra 24n+4 và 24n+3 là 2 số nguyên tố cùng nhau

Vậy \(A=\frac{6n+1}{8n+1}\) là phân số tối giản

b)tương tự

10 tháng 11 2016

tks bn hihahihi

4 tháng 12 2018

Nó tối giản mà bạn.

9 tháng 11 2016

\(\frac{n^3-1}{n^5+n+1}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^5-n^2+n^2+n+1}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+n^2+n+1}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left[n^2\left(n-1\right)+1\right]}\)

Vì n2+n+1 chia hết cho chính nó

=> đpcm

9 tháng 11 2016

thanks bn nhiềuhiha

bạn phải cm ƯCLNcủa tử và mẫu là 1

24 tháng 6 2019

bạn giải hộ mình với

15 tháng 4 2020

Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)

\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)

\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)

\(=>19n-5⋮d\)

do 19 zà 5 là số nguyên tố =>không chia hết cho d

=>p.số tối giản 

9 tháng 1 2024

tai sao 19 va 5 la so nguyen to lai ko chia het cho d ?

13 tháng 12 2022

Bài 1:

Gọi d=ƯCLN(15n^2+8n+6;30n^2+21n+13)

=>30n^2+21n+13-30n^2-16n-12 chia hết cho d

=>5n+1 chia hết cho d

=>5n chia hết cho d và 1 chia hết cho d

=>d=1

=>P là phân số tối giản

5 tháng 11 2023

bn sai phần 5n + 1 rùi vì giả dụ n = 7 và d = 3 thì 35 ko chia hết cho 3 mà phải +1 nữa thì = 36 mới chia hết cho 3