Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??
a) Tổng các chữ số của tử số chia hết cho 9 nên số đó chia hết cho 9, là stn
b) Gọi 2 số cần tìm là a và b ( a<b)
ƯCLN(a,b)=36 nên a=36k, b=36l ( UCLN(k,l)=1)
a+b=36k+36l=36(k+l)=423
k+l=432:36=12
Tự kẻ bảng rùi làm nốt nha
a) ta có : 101995 +8 = 10000.....000 + 8 ( có 1995 chữ số 0 ) chia hết cho 9
=> 1000........0008 có tổng các chữ số là 9
mà 9 chia hết cho 9
vậy 101995 + 8 chia hết cho 9 và là một số tự nhiên
b) đặt hai số cần tìm là : a = 36.m và b = 36.n với UCLN( m;n) = 1
ta có : a + b = 432 => 36.m + 36.n = 432
=> 36.( m + n ) = 432 => m +n = 12
suy ra :
m | 11 | 1 | 5 | 7 |
n | 1 | 11 | 7 | 5 |
vậy :
a | 396 | 36 | 180 | 252 |
b | 36 | 396 | 252 | 180 |
Mk sẽ giải từng câu :)
Bài 1 :
Gọi \(ƯCLN\left(2n+2;6n+5\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(2n+2\right)⋮d\\2\left(6n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+12⋮d\\12n+10⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(12n+12\right)-\left(12n+10\right)⋮d\)
\(\Rightarrow\)\(2⋮d\)
\(\Rightarrow\)\(d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Mà \(6n+5\) không chia hết cho \(2\) và \(-2\) nên \(ƯCLN\left(2n+2;6n+5\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~
1. Gọi d = ƯCLN (2n+2,6n+5)
=>\(\hept{\begin{cases}2n+2\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}3.\left(2n+2\right)\\6n+5\end{cases}}\)chia hết cho d
=>\(\hept{\begin{cases}6n+6^{\left(1\right)}\\6n+5^{\left(2\right)}\end{cases}}\)chia hết cho d
Từ (1) và (2) => (6n+6) - (6n+5) chia hết cho d
=> 6n + 6 - 6n - 5 chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN (2n+2,6n+5) = 1
Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản
2. Ta có:
B = 32. (\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{67.70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{67}-\frac{1}{70}\))
B = 32. (\(\frac{1}{10}-\frac{1}{70}\))
B = 27/35
Vì \(\frac{27}{35}< 1\)
=> B < 1
3. x + \(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)
x + ( \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)
x + (\(\frac{1}{5}-\frac{1}{45}\)) = \(\frac{-37}{45}\)
x + \(\frac{8}{45}=\frac{-37}{45}\)
x = \(\frac{-37}{45}-\frac{8}{45}\)
x = -1
a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)
Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)
Từ (1) và (2) => 1 < S < 1,5
Vậy...
b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)
\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)
Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)
Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)
Vậy...
Để quy đồng các mẫu của các phân số trong tổng A = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\), ta chọn mẫu chung là tích của 26 với các thừa số lẻ nhỏ hơn 100 . Gọi k1 , k2 , ... k100 là các thừa số phụ tương ứng , tổng A có dạng : B = \(\frac{\left(k1+k2+k3+...+k100\right)}{2^6.3.5.7....99}\)
Trong 100 phân số của tổng A chỉ có duy nhất phân số \(\frac{1}{64}\)có mẫu chứa 26 nên trong các thừa số phụ k1 , k2 , ... , k100 chỉ có k64 ( thừa số phụ của \(\frac{1}{64}\)) là số lẻ ( bằng 3.5.7...99 ) , còn các thừa số phụ khác đều chẵn ( vì chứa ít nhất một thừa số 2 ) do đó B ( tức là A ) không thể là số tự nhiên
a) Gọi (2n+2,8n+7) là d \(\left(d\inℕ^∗\right)\)
Vì (2n+2,8n+7) là d
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\8n+7⋮d\end{cases}}\)
\(\Rightarrow\)(2n+2)-(8n+7)\(⋮\)d
\(\Rightarrow\)(8n+8)-(8n+7)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)(2n+2,8n+7)=1 nên tử số và mẫu số là số nguyên tố cùng nhau
\(\Rightarrow\frac{2n+2}{8n+7}\)là phân số tối giản
Vậy \(\frac{2n+2}{8n+7}\)là phân số tối giản.
Các phần sau tương tự.
gọi d là ƯC(5n + 4; 5n + 11)
\(\Rightarrow\hept{\begin{cases}5n+4⋮d\\5n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+12⋮d\\15n+11⋮d\end{cases}}}\)
\(\Rightarrow15n+12-15n-11⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{\pm1\right\}\)
\(\Rightarrow\frac{5n+4}{5n+11}\) là phân số tối giản
A =(100....0 +8):9
A co gtri nguyen khi 10000000......0 +8 chia het 9
100.................008 chia het cho 9(vì tong cac chu so bang 9 chia het 9)
vay a la so nguyen
Ta có :100 đồng dư với 1 (mod 9)
=>100^2016 đồng dư với 1 (mod 9)
=>100^2016 + 8 đồng dư với 1+8 ( mod 9)
=>100^2016 + 8 đồng dư với 9 ( mod 9)
=>100^2016 + 8 đồng dư với 0 ( mod 9 )
=>100^2016 + 8 chia hết cho 9
=> A là 1 số tự nhiên
=> đpcm