Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, Ta có:
\(\dfrac{-8}{15}=-\dfrac{5}{18}+-\dfrac{1}{6}\)
b, Ta có:
\(-\dfrac{8}{15}=\dfrac{11}{15}-\dfrac{19}{15}\)
Bài 2:
a, \(\dfrac{11}{13}-\left(\dfrac{5}{12}-x\right)=-\left(\dfrac{15}{18}-\dfrac{11}{13}\right)\)
\(\Rightarrow\dfrac{11}{13}-\dfrac{5}{12}+x=-\dfrac{15}{18}+\dfrac{11}{13}\)
\(\Rightarrow x=-\dfrac{15}{18}+\dfrac{11}{13}+\dfrac{5}{12}-\dfrac{11}{13}\)
\(\Rightarrow x=-\dfrac{15}{8}+\dfrac{5}{12}=-\dfrac{35}{24}\)
b, \(2x-3=x+\dfrac{1}{2}\)
\(\Rightarrow2x-x=\dfrac{1}{2}+3\Rightarrow x=\dfrac{7}{2}\)
Chúc bạn học tốt!!!
1/
\(A\)dương \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-\frac{1}{2}\right)>0\\x-\frac{4}{5}>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0+\frac{1}{2}\\x>0+\frac{4}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{4}{5}\end{cases}}\Leftrightarrow x>0,8\)
2/ Làm tương tự nhưng có 2 trường hợp nên bạn làm từng trường hợp nhé ..!
Bài 1 :
\(\left(-2\right)\left(x+1\right)-3\left(1-x\right)=4\)
\(\Leftrightarrow-2x-2-3+3x=4\)
\(\Leftrightarrow x=4+2+3=9\)
Bài 2 :
Cho \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)
\(\Leftrightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
\(+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(\Leftrightarrow S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)(1)
Lại có :
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)(2)
Từ (1) và (2) , ta có :
\(\frac{3}{5}< S< \frac{4}{5}hay\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}< \frac{4}{5}\)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
ta có :
\(\hept{\begin{cases}-x^2-3< 0\\-\left(x-1\right)^2-5< 0\end{cases}\forall x\Rightarrow A>0}\forall x\)
hơn nữa nếu x hữu tỉ thì A hữu tỉ
khi đó A là số hữu tỉ dương