Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\\left(SAD\right)\perp\left(ABCD\right)\\\left(SAB\right)\cap\left(SAD\right)=SA\end{matrix}\right.\) \(\Rightarrow SA\perp\left(ABCD\right)\)
b/ \(SA\perp\left(ABCD\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABCD)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)
\(tan\widehat{SBA}=\frac{SA}{AB}=2\Rightarrow\widehat{SBA}\approx63^026'\)
c/ \(AB=BC\Rightarrow\Delta ABC\) cân tại B
\(\Rightarrow\) BO là trung tuyến đồng thời là đường cao
\(\Rightarrow BO\perp AC\)
Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BO\)
\(\Rightarrow BO\perp\left(SAC\right)\Rightarrow\left(SBO\right)\perp\left(SAC\right)\)
d/ \(AC=AB\sqrt{2}=a\sqrt{2}\)
Gọi M là trung điểm AD \(\Rightarrow AM=\frac{AD}{2}=a\Rightarrow CM=MD=a\)
\(\Rightarrow CD=CM\sqrt{2}=a\sqrt{2}\)
\(\Rightarrow CD^2+AC^2=AD^2\Rightarrow AC\perp CD\)
\(\Rightarrow\widehat{SCA}\) là góc giữa (SCD) và (ABCD)
\(tan\widehat{SCA}=\frac{SA}{AC}=\sqrt{2}\Rightarrow\widehat{SCA}\approx54^044'\)
a: Ta có: CD\(\perp\)AD(ABCD là hình vuông)
CD\(\perp\)SA(SA\(\perp\)(ABCD))
AD,SA cùng thuộc mp(SAD)
Do đó: CD\(\perp\)(SAD)
b: Ta có: BC\(\perp\)AB(ABCD là hình vuông)
BC\(\perp\)SA(SA\(\perp\)(ABCD))
AB,SA cùng thuộc mp(SAB)
Do đó: BC\(\perp\)(SAB)
c: AB\(\perp\)AD(ABCD là hình vuông)
AB\(\perp\)SA(SA\(\perp\)(ABCD))
AD,SA cùng thuộc mp(SAD)
Do đó: AB\(\perp\)(SAD)
d: AD\(\perp\)AB
AD\(\perp\)SA(SA\(\perp\)(ABCD)))
SA,AB cùng thuộc mp(SAB)
Do đó: AD\(\perp\)(SAB)
e: BD\(\perp\)AC(ABCD là hình vuông)
BD\(\perp\)SA(SA\(\perp\)(ABCD))
AC,SA cùng thuộc mp(SAC)
Do đó: BD\(\perp\)(SAC)
a. Ta có: \(\left\{{}\begin{matrix}AB\perp BC\\SA\perp BC\end{matrix}\right.\)\(\Rightarrow BC\perp\left(SAB\right)\)
b. Ta có: \(\left\{{}\begin{matrix}AH\perp SB\\AH\perp BC\:\left(BC\perp\left(SAB\right)\right)\end{matrix}\right.\)\(\Rightarrow AH\perp\left(SBC\right)\)
\(\Rightarrow AH\perp SC\)
a: Xét ΔAMB và ΔAMC có
AB=AC
AM chung
MB=MC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nen AM là đường cao
=>a//BC
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
\(AB=AC\left(gt\right)\)
\(BD=CD\left(gt\right)\)
\(AD\) là cạnh chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAD}=\widehat{CAD}\) (2 góc tương ứng)
Gọi giao điểm của \(AD\) và \(BC\) là \(I\)
Xét \(\Delta ABI\) và \(\Delta ACI\) có:
\(AB=AC\left(gt\right)\)
\(AI\) là cạnh chung
\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.g.c\right)\)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)
Mà \(\widehat{AIB}+\widehat{AIC}=180^0\) (2 góc kề bù)
\(\Rightarrow\widehat{AIB}+\widehat{AIB}=180^0\)
\(\Rightarrow2.\widehat{AIB}=180^0\Rightarrow\widehat{AIB}=90^0\)
\(\Rightarrow AD\perp BC\left(đpcm\right)\)
camon ạ ...........!