Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b=c+d\)
\(\Rightarrow a-b-c-d=0\)
\(\Rightarrow2a\left(a-b-c-d\right)=0\)
\(\Rightarrow a^2+b^2+c^2+d^2+2a\left(a-b-c-d\right)=a^2+b^2+c^2+d^2\)
\(=\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)\)
\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2\) là tổng 3 số chính phương.
\(\text{Đặt}:n=20182018\)
\(\Rightarrow M=\frac{3.n.\left(n+2\right)-5\left(n-1\right)-2n^2-5}{n}\)
\(=\frac{3n^2+6n-5n+5-2n^2-5}{n}\)
\(=\frac{n^2+n}{n}=\frac{n\left(n+1\right)}{n}=n+1\)
\(=20182018+1\)
\(=20182019\)
\(\Rightarrow M=20182019\)
Anh em nào cần KEY bài hình thì đây nhé:
Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath
P/S:bài này có thể giải nhiều cách khác nhau.Các bạn có thể gọi tia đối của tia AH rồi lấy điểm S sao cho HS=HA.
Trời thì ý bn là chứng minh bất đẳng thức côsi chứ j
Đây
Ta có: \(a,b\ge0\) nên \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Áp dụng hằng đẳng thức
Ta có: \(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2-2\sqrt{a}\cdot\sqrt{b}\ge0\)
Suy ra \(a+b-2\sqrt{ab}\ge0\)
Suy ra \(a+b\ge2\sqrt{ab}\)và dấu ''='' xảy ra khi và chỉ khi a=b
Câu tiếp tương tự
Với lại hình như cái này lớp 7 đâu có học đâu mà hỏi nhỉ ????????
d) Gọi M là giao điểm của HA và KI
\(\Delta\)HKB = \(\Delta\)HIC ( theo c)
=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )
=> ^BHA - ^BHK = ^CHA - ^CHI
=> KHA = ^IHA hay ^KHM = ^IHM (1)
Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung
=> \(\Delta\)IHM = \(\Delta\)KHM
=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ
=> ^HMK = ^HMI = 90 độ
hay HA vuông KI
mà HA vuông BC
=> KI // BC
A B C H
a) Xét tam giác AHB và tam giác AHC có:
AH chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)
AB=AC (tam giác ABC cân tại A)
=> Tam giác AHB=tam giác AHC (đpcm)
b) Xét tam giác ABC cân tại A có AH là đường cao
=> AH trùng với đường trung tuyến
=> H là trung điểm BC => HB=HC (đpcm)
Bài 1a):
Ta có:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\left(a+b\right).\dfrac{a+b}{ab}=\dfrac{a^2+2ab+b^2}{ab}=\dfrac{a^2+b^2}{ab}+2\)
Lại có: (a - b)2 = a2 - 2ab + b2 \(\ge\) 0
\(\Rightarrow\) a2 + b2 \(\ge\) 2ab
\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}\ge2\)
\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}+2\ge4\)
Vậy \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Bài 2a):
Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
Vậy ta có đpcm
Kéo dài KE cắt đường vuông góc với AB tại M
Khi đó ABME là hình vuông hay AB = BM = ME = EA (1)
Xét \(\Delta\)ABD và \(\Delta\)HBD có:
BD: cạnh chung
^ABD = ^HBD (gt)
Do đó \(\Delta\)ABD = \(\Delta\)HBD (ch-gn)
=> AB = AH (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra BH = BM
Xét \(\Delta\)BHK và \(\Delta\)BMK có:
BK: cạnh chung
BH = BM (cmt)
Do đó \(\Delta\)BHK = \(\Delta\)BMK (ch-cgv)
=> ^HBK = ^ MBK (hai góc tương ứng)
Kết hợp với ^ABD = ^ HBD suy ra ^DBK = \(\frac{1}{2}\)^ABM = 450
Vậy ^DBK = 450 (đpcm)
BẰNG N
Giờ này mà bạn đi hỏi mấy bài này á!Lớp 7 chưa học hằng đẳng thức nhưng vẫn làm được mà!
Đặt \(\left(\sqrt{a};\sqrt{b}\right)\rightarrow\left(x;y\right)\).Cần chứng minh:\(x^2+y^2\ge2xy\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x\left(x-y\right)-y\left(x-y\right)\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)
Dấu '=" xảy ra khi x = y tức là \(\sqrt{a}=\sqrt{b}\Leftrightarrow a=b\)