Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ a+b+c = 2 suy ra ( a+b+c)^2 =4 <=> a^2 +b^2 +c^2 + 2 (ab+ac+bc)=4 ma2 a^2 + b^2 +c^2 = 2 nên suy ra 2(ab+bc+ac)=2 <=> ab +ac+bc=1 , chia cả 2 vế cho abc khác 0 ta được 1/a+1/b+1/c = 1/abc (đpcm)
Ta có: \(a+b+c=2\)
\(\Leftrightarrow\left(a+b+c\right)^2=4\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=4\)
\(\Leftrightarrow2+2\left(ab+bc+ac\right)=4\)(Vì \(a^2+b^2+c^2=2\))
\(\Leftrightarrow2\left(ab+bc+ac\right)=2\)
\(\Leftrightarrow ab+bc+ac=1\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\left(đpcm\right)\)
cái này tương tự nà chỉ khác tử -> mẫu Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Ta có:
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow abc^2+ab^2c+a^2bc-ab-bc-ca=0\left(1\right)\)
Ta cần chứng minh
\(b\left(a^2-bc\right)\left(1-ac\right)=a\left(1-bc\right)\left(b^2-ac\right)\)
\(\Leftrightarrow ab^2c^2-a^2bc^2+ab^3c-b^2c-a^3bc+a^2c-ab^2+a^2b=0\)
\(\Leftrightarrow b\left(abc^2+ab^2c-bc-ab\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)
\(\Leftrightarrow b\left(ac-a^2bc\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)
\(\Leftrightarrow-a\left(ab^2c+abc^2+a^2bc-bc-ac-ab\right)=0\)(theo (1) thì đúng)
\(\RightarrowĐPCM\)
Bài làm :
Ta có :
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)
\(\Leftrightarrow2ab+2bc+2ac=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=0\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)
\(\Leftrightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\left(1\right)\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\left(2\right)\)
Thay (1) vào (2) ; ta được :
\(\frac{1}{a^3}+\frac{1}{b^3}-\frac{3}{abc}=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
=> Điều phải chứng minh
Ta có \(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
\(\Leftrightarrow2ab+2ac+2bc=0\)
\(\Leftrightarrow2\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow ab+ac+bc=0\)
Ta lại có giả sử
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^3b^3c^3}=\frac{3}{abc}\)
\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=3\)
\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3=3.a^2b^2c^2\)
\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3-3.a^2b^2c^2=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)^3-3ca\left(ab+bc\right)\left(ab+bc+ac\right)-3ab^3c\left(-ac\right)-3a^2b^2c^2=0\)
\(\Leftrightarrow0+3a^2b^2c^2-3a^2b^2c^2+0=0\)
\(\Leftrightarrow0=0\left(lđ\right)\)
Vậy bất đẳng thức được chứng minh