Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh: \(\frac{a}{2b}\)+ \(\frac{b}{2a}\)- 1 \(\ge\)0 \(\Leftrightarrow\) \(\frac{1}{2}\)(\(\frac{a}{b}\)+ \(\frac{b}{a}\)) - 1 \(\ge\)0
\(\Leftrightarrow\) (\(\frac{a}{b}\)+ \(\frac{b}{a}\)) - 2 \(\ge\)0 \(\Leftrightarrow\) (\(\frac{a}{b}\)+\(\frac{b}{a}\)) - 2 \(\sqrt{\frac{a}{b}\frac{b}{a}}\) \(\ge\) 0
\(\Leftrightarrow\) (\(\sqrt{\frac{a}{b}}\)-\(\sqrt{\frac{b}{a}}\))2 \(\ge\)0 , luôn đúng với mọi a, b thuộc N* (đpcm).
\(\Leftrightarrow\)
\(\frac{a}{2b}+\frac{b}{2a}\ge1\)
\(\frac{2a^2}{4ba}+\frac{2b^2}{4ab}\ge1\)
\(2a^2+2b^2\ge1\)( do số bình phương luôn luôn lớn hơn 0)
Sửa đề bài nè bạn : Cho \(a,b\inℕ^∗\)và \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\). Chứng minh rằng : \(S\ge6\)
Giải:
\(S=\left[\frac{a}{c}+\frac{b}{c}\right]+\left[\frac{b}{c}+\frac{c}{a}\right]+\left[\frac{c}{b}+\frac{a}{b}\right]\)
\(S=\left[\frac{a}{c}+\frac{c}{a}\right]+\left[\frac{b}{c}+\frac{c}{b}\right]+\left[\frac{b}{a}+\frac{a}{b}\right]\)
\(S\ge2+2+2=6\)
\(\Rightarrow(đpcm)\)
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
Áp dụng BĐT cô si ta có:\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)
LÀm tương tự ta có:
\(\hept{\begin{cases}\frac{a}{b}+\frac{b}{a}\ge2\\\frac{a}{c}+\frac{c}{a}\ge2\\\frac{c}{b}+\frac{b}{c}\ge2\end{cases}}\Rightarrowđpcm\)
Vậy GTNN của S =6 khi a=b=c
Để \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
<=> \(\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\)
<=> \(\dfrac{a^2-2ab+b^2}{ab}\ge0\)
<=> \(\dfrac{\left(a-b\right)^2}{ab}\ge0\)
Mà \(\left(a-b\right)^2\ge0\)
\(\dfrac{a}{b}>0\) <=> ab > 0
=> đpcm
Dấu "=" xảy ra <=> a = b
Gọi b = a + k (k \(\in\) Z, k \(\ne\) -a)
\(\dfrac{a}{b}>0\)
Ta có:
\(\dfrac{a}{a+k}+\dfrac{a+k}{a}\\ =\dfrac{a^2}{a\cdot\left(a+k\right)}+\dfrac{\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a^2+2ak+k^2\right)}{a^2+ak}\\ =\dfrac{a^2+a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =\dfrac{2\cdot\left(a^2+ak\right)}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =2+\dfrac{k^2}{a^2+ak}>2\)
Vậy \(\dfrac{a}{a+k}+\dfrac{a+k}{a}>2\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}>2\left(đpcm\right)\)
Sai! CMR: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) mà?
Vào đây đi:
dfrac{a}{b}+\dfrac{b}{a - Hoc24
giả sử a \(\ge\)b \(\Rightarrow\)a = b + m ( m \(\ge\)0 )
do đó : \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)
\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=2\)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)( a,b thuộc N* )
Dấu " = " xảy ra khi a = b