Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b không chia hết cho 3 nên a, b có dạng \(3k+1\) hoặc \(3k+2\) \(\left(k\inℤ\right)\)
* Nếu \(a=3k+1\)\(\Rightarrow\)\(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1
\(b=3k+1\)\(\Rightarrow\)\(b^2=\left(3k+1\right)^2=9k^2+1\) chia 3 dư 1
* Nếu \(a=3k+2\)\(\Rightarrow\)\(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1
\(b=3k+2\)\(\Rightarrow\)\(b^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1
\(\Rightarrow\)\(a^2,b^2\) chia 3 dư 1
\(\Rightarrow\)\(a^2-b^2⋮3\)
Lại có :
\(a^6-b^6=\left(a^2\right)^3-\left(b^2\right)^3=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left[\left(a^4-2a^2b^2+b^4\right)+3a^2b^2\right]\)
\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)
Xét \(\left(a^2-b^2\right)⋮3\)
\(\Rightarrow\)\(\left(a^2-b^2\right)^2⋮3\)
\(\Rightarrow\)\(\left(a^2-b^2\right)^2+3a^2b^2⋮3\)
\(\Rightarrow\)\(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮9\)
Hay \(a^6-b^6⋮9\) ( đpcm )
Chúc bạn học tốt ~
Vì a không chia hết cho 3 => a có dạng 3k+1 hoặc 3k+2 (k thuộc Z)
- Nếu \(a=3k+1\Rightarrow a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1
- Nếu \(a=3k+2\Rightarrow a^2=\left(3k+2\right)^2=9k^2+12k+1\) chia 3 dư 1
=> nếu a không chia hết cho thì a2 chia 3 dư 1 (1)
CM tương tự ta có nếu b không chia hết cho 3 thì b2 chia 3 dư 1 (2)
Từ (1) và (2) => \(a^2-b^2⋮3\) (3)
Lại có: \(a^6-b^6=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left(a^4-2a^2b^2+b^4+3a^2b^2\right)=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)
Từ (3) => \(\left(a^2-b^2\right)^2⋮3\)
Mà \(3a^2b^2⋮3\)
\(\Rightarrow\left(a^2-b^2\right)^2+3a^2b^2⋮3\) (4)
Từ (3) và (4) => \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮3.3=9\) hay \(a^6-b^6⋮9\) (đpcm)
Vì \(a\) không chia hết cho \(3\) nên \(a\) có dạng \(a=3k+1\) hoặc \(a=3k+2\) \(\left(k\in Z\right)\)
Nếu \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia \(3\) dư \(1\)
Nếu \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+9k+8\) chia \(3\) dư \(1\)
Vậy, nếu \(a\) không chia hết cho \(3\) thì \(a^2\) chia \(3\) dư \(1\) \(\left(1\right)\)
Tương tự, ta cũng có nếu \(b\) không chia hết cho \(3\) thì \(b^2\) chia \(3\) dư \(1\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) , suy ra \(a^2-b^2\) chia hết cho \(3\) \(\left(3\right)\)
Ta có: \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2\right)^2+a^2b^2+\left(b^2\right)^2\right]=\left(a^2-b^2\right)\left[\left(a^2\right)^2-2a^2b^2+\left(b^2\right)^2+3a^2b^2\right]\)
\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)
Theo chứng minh trên, \(a^2-b^2\) chia hết cho \(3\) nên \(\left(a^2-b^2\right)^2\) chia hết cho \(3\)
Lại có: \(3a^2b^2\) chia hết cho \(3\) với mọi \(a;b\in Z\)
nên \(\left(a^2-b^2\right)+3a^2b^2\) chia hết cho \(3\) \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\) chia hết cho \(3.3\) hay \(a^6-b^6\) chia hết cho \(9\) \(\left(đpcm\right)\)
a^6-b^6=(a^3-b^3)(a^3+b^3)=(a-b)(a^2+ab+b^2)(a+b)(a^2-ab+b^2) dung hang dang thuc
Vi a,b ko chia het cho 3 (1)
suy ra TH1 a=3k+1, b=3q+2 hoacTH2 a=3k+2, b=3q+1
TH1
a+b=3k+3q+3 chia het cho 3
a^2 va b^2 la so chinh phuong nen chia 3 du 0 hoac 1 ma a,b ko chia het cho 3
suy ra a^2, b^2 chia 3 du 1
suy ra a^2+b^2 chia 3 du 2
Lai co a=3k+1, b=3q+2 suy ra ab chia 3 du 2
Tu do suy ra a^2-ab+b^2 chia het cho 3 (2)
tu 1 va 2 so chia het cho 9
TH2 tuong tu
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Ta có : n \(⋮̸\)2 \(\Rightarrow n\)lẻ \(\Rightarrow n^2\)lẻ \(\Rightarrow4n^2\)chẵn
Mà \(3n+5\)chẵn
Suy ra \(4n^2+3n+5\)chẵn nên \(⋮\)2 ( 1 )
Ta có : n \(⋮̸\)3
\(\Rightarrow\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\)
+) n = 3k + 1 thì \(4n^2+3n+5=4\left(3k+1\right)^2+3\left(3k+1\right)+5=36k^2+33k+12⋮3\)
+) n = 3k + 2 thì \(4n^2+3n+5=4\left(3k+2\right)^2+3\left(3k+2\right)+5=36k^2+57k+27⋮3\)
vậy với n \(⋮̸\)3 thì \(4n^2+3n+5⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với ( 2 ; 3 ) = 1 nên \(4n^2+3n+5⋮6\)
Ta có:
\(a^6-b^6=\left(a^3+b^3\right)\left(a^3-b^3\right)=\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)
Xét: a và b có cùng số dư khi chia cho 3 ( nghĩa là cùng dư 1 hoặc 2),khi đó \(a-b⋮3\Rightarrow\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)⋮3\)
a và b khác số dư khi chia cho 3 (nghĩa là 1 số chia 3 dư 1,1 số chia 3 dư 2),khi đó \(a+b⋮3\Rightarrow\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)⋮3\)
\(\Rightarrowđpcm\)
Vì \(a\) không chia hết cho \(3\) nên \(a\) có dạng \(a=3k+1\) hoặc \(a=3k+2\) \(\left(k\in Z\right)\)
Nếu \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia \(3\) dư \(1\)
Nếu \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+9k+8\) chia \(3\) dư \(1\)
Vậy, nếu \(a\) không chia hết cho \(3\) thì \(a^2\) chia \(3\) dư \(1\) \(\left(1\right)\)
Tương tự, ta cũng có nếu \(b\) không chia hết cho \(3\) thì \(b^2\) chia \(3\) dư \(1\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) , suy ra \(a^2-b^2\) chia hết cho \(3\) \(\left(3\right)\)
Ta có: \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2\right)^2+a^2b^2+\left(b^2\right)^2\right]=\left(a^2-b^2\right)\left[\left(a^2\right)^2-2a^2b^2+\left(b^2\right)^2+3a^2b^2\right]\)
\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)
Theo chứng minh trên, \(a^2-b^2\) chia hết cho \(3\) nên \(\left(a^2-b^2\right)^2\) chia hết cho \(3\)
Lại có: \(3a^2b^2\) chia hết cho \(3\) với mọi \(a;b\in Z\)
nên \(\left(a^2-b^2\right)+3a^2b^2\) chia hết cho \(3\) \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\) chia hết cho \(3.3\) hay \(a^6-b^6\) chia hết cho \(9\) \(\left(đpcm\right)\)
Xét \(a^6-1=\left(a^3-1\right)\left(a^3+1\right)\)
Đặt \(a=7k⊥r\)với r=1;2;3. (vì a không là bội của 7)
Ta có \(a^3=\left(7k⊥r\right)^3=343k^3⊥147k^2r+21kr^2⊥r^3\)
Xét r với lần lượt các giá trị 1;2;3.
Từ đó ta suy ra được \(a^3=7l⊥1\)
Xét từng trường hợp trên ta suy ra \(\left(a^3-1\right)\left(a^3+1\right)⋮7\)dẫn đến \(\left(a^6-1\right)⋮7\)
Vậy........