K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

Bạn ghi sai đề rồi. Qui tắc cộng phân số là "qui đồng mẫu số trước"

Mình nghĩ đề là \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\). Mình làm theo đề này :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a = bk ; c = dk

Ta có : \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\); mà \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\) (t/c tỉ lệ thức)

Do đó \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)

19 tháng 6 2016

ko phải vậy đâu. cô mình cho đề này vs lại mình cũng có quyển đó sorry nha! nhưng mình vẫn sẽ tick cho bn

 

31 tháng 8 2020

Bài làm:

Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Ta có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)

=> \(\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)

31 tháng 8 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

=>\(\frac{a^2+b^2}{a^2-b^2}=\frac{\left(kb\right)^2+b^2}{\left(kb\right)^2-b^2}=\frac{k^2b^2+b^2}{k^2b^2-b^2}=\frac{b^2\left(k^2+1\right)}{b^2\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)(1)

=> \(\frac{c^2+d^2}{c^2-d^2}=\frac{\left(kd\right)^2+d^2}{\left(kd\right)^2-d^2}=\frac{k^2d^2+d^2}{k^2d^2-d^2}=\frac{d^2\left(k^2+1\right)}{d^2\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)(2)

Từ (1) và (2) => đpcm

5 tháng 9 2018

Lời giải:

Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2

Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [\(\frac{4}{3}\)]+1=2số có cùng số dư khi chia cho 3

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác

Trong 4 số a,b,c,da,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)\(⋮\)4

Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3

⇒c−a⋮2; d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó nó cũng chia hết cho 12

Ta có đpcm,

8 tháng 10 2016

a-20=24-[b+c]

a+b+c=24+20

a+b+c=44

ta co a/2=b/4=c/5=a+b+c/2+4+5=44/11=4

a/2=4 =>a=4.2=8

b/4=4 =>b=4.4=16

c/5=4 =>c=4.5=20

14 tháng 12 2016

Ta có: a; b; c tỉ lệ với 2; 4; 5 và a - 20=24 - (b + c)

\(\Rightarrow\) \(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\) và a - 20=24 -  (b + c)

Ta lại có: a - 20=24 - (b + c)

\(\Rightarrow\) \(a+b+c=44\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{44}{11}=4\)

Với \(\frac{a}{2}=4\Rightarrow a=8\) 

Với \(\frac{b}{4}=4\Rightarrow b=16\) 

Với \(\frac{c}{5}=4\Rightarrow c=20\) 

Vậy \(a=8;b=16;c=20\)