Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si ngược dấu ta có:
\(a^2b^2(a^2+b^2)=\frac{ab}{2}.2ab(a^2+b^2)\leq \frac{ab}{2}\left(\frac{2ab+a^2+b^2}{2}\right)^2\)
\(\Leftrightarrow a^2b^2(a^2+b^2)\leq \frac{ab}{2}(a+b)^2=\frac{ab}{2}.4=2ab(1)\)
Tiếp tục áp dụng BĐT Cô-si:
\(2ab\leq 2\left(\frac{a+b}{2}\right)^2=2(\frac{2}{2})^2=2(2)\)
Từ \((1);(2)\Rightarrow a^2b^2(a^2+b^2)\leq 2\) (đpcm)
Dấu "=" xảy ra khi $a=b=1$
Chỉ đúng trong trường hợp các số thực dương (kì lạ là các bạn rất thích quên điều kiện này khi đăng đề lên)
a/ \(\frac{a^3}{b^2}+a\ge2\sqrt{\frac{a^4}{b^2}}=\frac{2a^2}{b}\) ; \(\frac{b^3}{c^2}+b\ge\frac{2b^2}{c}\); \(\frac{c^3}{a^2}+c\ge\frac{2c^2}{a}\)
Cộng vế với vế:
\(VT+a+b+c\ge2VP\Rightarrow VT\ge2VP-\left(a+b+c\right)\)
Mà \(2VP=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{\left(a+b+c\right)^2}{a+b+c}\)
\(\Rightarrow2VP\ge VP+a+b+c\)
\(\Rightarrow2VP-\left(a+b+c\right)\ge VP\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi \(a=b=c\)
Câu dưới tương tự:
\(\frac{a^5}{b^3}+a^2+a^2\ge\frac{3a^3}{b}\) , làm tương tự với 2 cái còn lại và cộng lại:
\(\Rightarrow VT+2\left(a^2+b^2+c^2\right)\ge3\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)=3\left(\frac{a^4}{ab}+\frac{b^4}{ca}+\frac{c^4}{ab}\right)\ge\frac{3\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow VT\ge a^2+b^2+c^2\)
Dấu "=" xảy ra khi \(a=b=c\)
1) đây nha : https://hoc24.vn/hoi-dap/question/637285.html
câu 2 cũng chả khác gì cả
a)Ta có BĐT tam giác :
\(\left\{{}\begin{matrix}a+b>c\\a+c>b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\end{matrix}\right.\)
\(\Rightarrow\left[a+\left(b+c\right)\right]\left[a-\left(b-c\right)\right]>0\)
\(\Rightarrow a^2-\left(b-c\right)^2>0\Rightarrow a^2>\left(b-c\right)^2\)
b)Áp dụng BĐT ở câu a ta có:
\(a^2+b^2+c^2>\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2>b^2+c^2-2bc+a^2+c^2-2ac+a^2+b^2-2ab\)
\(\Leftrightarrow2ab+2bc+2ca>2a^2+2b^2+2c^2\)
\(\Leftrightarrow ab+bc+ca>a^2+b^2+c^2\)
ủa anh ơi bài b) kêu chứng minh là \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) sao anh lại đi chứng minh \(a^2+b^2+c^2< ab+bc+ca\) ở cuối bài .-.