Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(10^9+10^8+10^7⋮222\)
Ta có:\(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)\)
\(=10^7.111=5^7.2^7.111=5^7.2^6.2.111=5^7.2^6.222\)
Vì 222\(⋮222\Rightarrow5^7.2^6.222⋮222\)
Vậy \(10^9+10^8+10^7⋮222\)
b) 817 - 279 - 913 ⋮ 45
\(\)Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{26}.\left(3^2-3-1\right)\)
\(=3^{26}.5=3^{24}.3^2.5=3^{24}.45\)
Vì \(45⋮45\Rightarrow3^{24}.45⋮45\)
Vậy \(81^7-27^9-9^{13}⋮45\)
CHÚC BẠN HỌC TỐT!!
c: \(=\dfrac{7}{23}\cdot\dfrac{-24-45}{18}=\dfrac{7}{23}\cdot\dfrac{-69}{18}=\dfrac{7}{18}\cdot\left(-3\right)=-\dfrac{7}{6}\)
d: \(=\dfrac{7}{5}\left(23+\dfrac{1}{4}-13-\dfrac{1}{4}\right)=\dfrac{7}{5}\cdot10=14\)
e: \(=\dfrac{2^5\cdot3^3\cdot5^3}{2^3\cdot3^3\cdot2^2\cdot5^2}=5\)
i: \(=\dfrac{1}{3^{10}}\cdot3^{50}-\dfrac{2^{10}}{3^{10}}:\dfrac{4^5}{9^5}=3^{40}-1\)
\(S=1+2+2^2+.....+2^{2017}\)
\(\Leftrightarrow2A=2+2^2+.....+2^{2018}\)
\(\Leftrightarrow2A-A=\left(2+2^2+....+2^{2018}\right)-\left(1+2+.....+2^{2017}\right)\)
\(\Leftrightarrow A=2^{2018}-1\)
\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)
=>2n-1=25=>n-1=5=>n=5+1=6
vậy......
~~~~~~~~~~~~~~~
a) \(7^6+7^5-7^4\) = \(7^4.\left(7^2+7-1\right)\) =\(7^4.55\) (55 chia hết cho 11) Vậy \(7^6+7^5-7^4⋮11\) b) \(10^9+10^8+10^7\) = \(10^7.\left(10^2+10+1\right)\) = \(10^7.111\) =\(10^6.10.111\) =\(10^6.5.2.111\) =\(10^6.5.222⋮222\) Vậy \(10^9+10^8+10^7⋮222\)