K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
YH
1
30 tháng 7 2015
Chứng minh: chia hết cho 24
+) Chứng minh a2 - 1 chia hết cho 3 ( đã chứng minh)
+) Chứng minh a2 - 1 chia hết cho 8
a2 - 1 = (a - 1)(a+ 1) Vì a là số nguyên tố > 3 nên a lẻ => a - 1 và a + 1 chẵn
Ta có a - 1 và a+ 1 là 2 số nguyên liên tiếp nên đặt a - 1 = 2k ; a + 1 = 2k + 2
=> a2 - 1 = 2k.(2k+2) = 4.k.(k+1)
Vì k; k+ 1 là 2 số nguyên liên tiếp nên k.(k+1) chia hết cho 2 =>a2 - 1 = 4k(k+1) chia hết cho 4.2 = 8
Vậy a2 -1 chia hết cho cả 3 và 8 nên chia hết cho 24
AH
Akai Haruma
Giáo viên
17 tháng 2 2021
Đề sai. Bạn cho $a=3,b=5$ thì $a^3b-ab^2=60$ không chia hết cho $240$
NN
0
ST
0
9 tháng 11 2016
Dot eo chui noi tu lam di
nho k nha!
thang dot cung biet lam bai nay