Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^2\) \(=b.c\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Ta có:
\(a^2=b.c\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-c}{b-a}\)
\(Từ\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{c+a}=\dfrac{c+a}{c-a}\)
\(\)Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Ta có : a2 = bc \(\Rightarrow\) \(\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)\(\Rightarrow\)\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)(đpcm)
Áp dụng tính chất 2 phân số bằng nhau:\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc\) , ta có:
\(=>\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)
\(=>ac-a^2+bc-ab=ac+a^2-bc-ab\)
\(=>-a^2+bc=a^2-bc\)
\(=>bc-a^2-\left(a^2-bc\right)=0\)
\(=>2bc-2a^2=0=>2\left(bc-a^2\right)=0=>bc-a^2=0\)
\(=>bc=a^2\)
CHÚC BẠN HỌC TỐT........
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
b, Ta có: \(a^2=bc\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrowđpcm\)
a) $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1$
(tính chất dãy tỉ số bằng nhau)
$\dfrac{a}{b}=1=>a=b$
$\dfrac{b}{c}=1=>b=c$
$\dfrac{c}{a}=1=>c=a$
Vậy a = b = c.
b) Ta có : $a^2=bc=>\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$(tính chất dãy tỉ số bằng nhau)
$=>\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$
$=>\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}$
ta có : \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)
khi đó ta có : \(\dfrac{b-a}{a}=\dfrac{b^2-a^2}{a^2+c^2}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{b-a}{a}\) (luôn đúng)
\(\Rightarrow\) (đpcm)
Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Ta có: \(a^2=bc\)
\(\Leftrightarrow a\cdot a=b\cdot c\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{a}\)
\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
\(\Leftrightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
hay \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)(đpcm)