\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) với mọi a, b

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-b^2-2ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

--> đpcm

Dấu ''='' xảy ra khi a=b

5 tháng 7 2018

\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow2\left(a^2+b^2\right)-\left(a+b\right)^2\ge0\)

\(2\left(a^2+b^2\right)- \left(a^2+b^2+2ab\right)=2\left(a^2+b^2\right)-a^2-b^2-2ab\)

\(2\left(a^2+b^2\right)-\left(a^2+b^2\right)-2ab=a^2+b^2-2ab=\left(a-b\right)^2\)

\(\Rightarrow\left(a-b\right)^2\ge0\)

29 tháng 12 2018

a.

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)

\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)

\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)

\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)

Suy ra (*) đúng => đpcm

Dấu "=" xảy ra khi a = b

29 tháng 12 2018

b.

\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)

\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)

\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)

Theo câu a. thì điều này đúng

Dấu "=" khi a=b=c

31 tháng 7 2017

3) Biến đổi tương đương:

\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\) (1)

\(\Leftrightarrow\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+6\left(a^3+c^3+b^3\right)\)

\(\ge\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)

\(\Leftrightarrow\left[a^3+b^3-ab\left(a+b\right)\right]+\left[a^3+c^3-ac\left(a+c\right)\right]+\left[b^3+c^3-bc\left(b+c\right)\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(a+c\right)\left(a-c\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\) luôn đúng do a, b, c > 0

=> (1) đúng

Dấu "=" xảy ra khi a = b = c

31 tháng 7 2017

4) Ta có: a+b>c ; b+c>a; a+c>b

Xét \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

Tương tự: \(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy suy ra được điều phải chứng minh

2 tháng 5 2017

a) Ta có: \(\left(a-b\right)^2\ge0\)

=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)

b) \(\left(a+b\right)^2\ge0\)

=> \(a^2+b^2+2ab\ge0\)

<=> \(a^2+b^2\ge-2ab\)

<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)

c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)

\(a\left(a+2\right)=a^2+2a\)

Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)

d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)

<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)

<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)

(1) đúng => (*) đúng

d) Bạn ấy giải rồi ,mình không giải nữa

2 tháng 5 2017

e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)

\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)

Vậy..........

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Sử dụng pp biến đổi tương đương:

a) \(\frac{a^2+b^2}{2}\geq \left(\frac{a+b}{2}\right)^2\)

\(\Leftrightarrow \frac{a^2+b^2}{2}\geq \frac{(a+b)^2}{4}\)

\(\Leftrightarrow 4(a^2+b^2)\geq 2(a+b)^2\Leftrightarrow 4(a^2+b^2)\geq 2(a^2+2ab+b^2)\)

\(\Leftrightarrow 2(a^2+b^2)\geq 4ab\Leftrightarrow 2(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow 2(a-b)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm. Dấu bằng xẩy ra khi $a=b$
c)

\(\frac{a^2+b^2+c^2}{3}\geq \left(\frac{a+b+c}{3}\right)^2\) \(\Leftrightarrow \frac{a^2+b^2+c^2}{3}\geq \frac{(a+b+c)^2}{9}\)

\(\Leftrightarrow 3(a^2+b^2+c^2)\geq (a+b+c)^2\)

\(\Leftrightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)

\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)

\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)\geq 0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b=c$

b) \(\frac{a^4+b^4}{2}\geq \left(\frac{a+b}{2}\right)^4\)

Áp dụng 2 lần BĐT phần a: \(\frac{a^4+b^4}{2}\geq \left(\frac{a^2+b^2}{2}\right)^2(1)\)

Và: \(\frac{a^2+b^2}{2}\geq \left(\frac{a+b}{2}\right)^2\Rightarrow \left(\frac{a^2+b^2}{2}\right)^2\geq \left(\frac{a+b}{2}\right)^4(2)\)

Từ \((1); (2)\Rightarrow \frac{a^4+b^4}{2}\geq \left(\frac{a+b}{2}\right)^4\) (đpcm)

Dấu bằng xảy ra khi \(a=b\)

7 tháng 4 2018

Đáng lẽ là bé hơn hoặc bằng

(ax + by)2 = a2x2 + 2axby + b2y2 

(a2 + b2)(x2 + y2) = a2x2 + a2y2 + b2x2 + b2y2

Ta cần chứng minh:

\(2axby\le b^2x^2+a^2y^2\)'

\(\Leftrightarrow0\le b^2x^2-2aybx+a^2y^2\)

<=> 0 \(\le\)(bx - ay)2 (đúng)

Vậy bđt đc chứng minh

16 tháng 4 2018

Áp dụng bất đẳng thức Cauchy-Schwarz: \(NL=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2\ge\dfrac{\left(a+\dfrac{1}{a}+b+\dfrac{1}{b}\right)^2}{2}=\dfrac{\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2}{2}\) Bất đẳng thức phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ta có: \(NL\ge\dfrac{\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2}{2}\ge\dfrac{\left(1+\dfrac{4}{a+b}\right)^2}{2}=\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)Dấu "=" khi \(a=b=\dfrac{1}{2}\)

16 tháng 4 2018

Ohhh yeah hay qá