K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Links:

Chứng minh $a^2+5b^2-(3a+b)\geq 3ab-5$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

Chứng minh a^2 + 5b^2 - (3a + b) ≥ 3ab - 5 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

20 tháng 2 2018

Chứng minh a^2 + 5b^2 - (3a + b) = 3ab - 5,a^2 + 5b^2 - (3a + b) = 3ab - 5,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

8 tháng 8 2021

Ta có: \(VP=\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)

\(=a^3-b^3-3a^2b+3ab^2\)

\(=a^3-3a^2b+3ab^2-b^3=\left(a-b\right)^3=VT\)

⇒ đpcm

\(\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2-3ab\right)\)

\(=\left(a-b\right)^3\)

13 tháng 4 2022

lỗi r bn

13 tháng 4 2022

lx

30 tháng 9 2018

1.

a) ( a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)

= [(a+1)(a-1)][(a-2)(a+2)](a^2+1)(a^2+4)

=[(a^2+1)(a^2-1)][(a^2+4)(a^2-4)]

=(a^4-1)(a^4-16)

b)(3a+1)^2 + (2-3a)(2+3a)

= 9a2 + 6a +1 + 4 - 9a2

= 6a+5

2.

Ta có a3 +b3 = ( a + b)(a2 -ab + b2) = a2 + 2ab +b2 -3ab = (a+b)2 -3ab = 1-3ab ( dpcm)

30 tháng 9 2018

1.

a) (a + 1)(a + 2)(a+ 4)(a - 1)(a+ 1)(a - 2)

= [(a + 1)(a - 1)][(a + 2)(a - 2)](a+ 4)(a+ 1)

= (a2 - 1)(a2 - 4)(a2 + 4)(a2 + 1)

= [(a2 - 1)(a2 + 1)][(a2 - 4)(a2 + 4)]

= (a4 - 1)(a4 - 16)

= a8 - 16a4 - a4 + 16

= a8 - 17a4 + 16

b) (3a + 1)2 + (2 - 3a)(2 + 3a)

= 9a2 + 6a + 1 + 22 - 9a2

= (9a2 - 9a2) + 6a + (1 + 4)

= 6a + 5

2.

a + b = 1

(a + b)3 = 13

a3 + 3a2b + 3ab2 + b3 = 1

a3 + b3 + 3ab(a + b) = 1

a3 + b3 = 1 - 3ab(a + b)

Mà a + b = 1

=> a3 + b3 = 1 - 3ab

Vậy với a + b = 1 thì a3 + b3 = 1 - 3ab

30 tháng 9 2018

2.\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=1-3ab\)

30 tháng 9 2018

1a)\(\left(3a+1\right)^2+\left(2-3a\right)\left(2+3a\right)=9a^2+6a+1+4-9a^2\)

.......................................................\(=6a+5\)

14 tháng 5 2021

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
14 tháng 5 2021

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

13 tháng 6 2016

thế còn c ở đâu?

14 tháng 6 2016

cảm ơn bạn nhìu

2 tháng 5 2020

Bài làm

Ta có: 3a3 + 3a2b + 3ab2 + 3b3 

= 3( a3 + a2b + ab2 + b3 )

= 3[ a2( a + b ) + b2( a + b ) ]

= 3( a2 + b2 )( a + b )

Ta có: ( a2 + b2 ) > 0 V a, b

=> ( a2 + b2 ) . 3 > 0

Mà 3( a2 + b )2( a + b ) > 0 ( đpcm ) 

2 tháng 5 2020

\(3a^3+3a^2b+3ab^2+3b^3>0\)

\(\Leftrightarrow3\left(a^3+a^2b+ab^2+b^3\right)>0\)

\(\Leftrightarrow3\left[a^2\left(a+b\right)+b^2\left(a+b\right)\right]>0\)

\(\Leftrightarrow3\left(a^2+b^2\right)\left(a+b\right)>0\)(đpcm)