Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\) chẵn thì \(A\) chẵn đúng không?
\(n\) lẻ thì \(n^2\) và \(5n\) là các số lẻ nên \(A\) cũng chẵn.
Vậy \(A\) là hợp số.
Nếu \(n\) lẻ thì \(A\) chẵn mà \(n\) chẵn thì \(A\) cũng chẵn. Hết!
Giả sử E là số tự nhiên
Biến đổi E ta có :
\(E=\frac{3n^2}{2n^2+n-1}+\frac{1}{n+1}=\frac{3n^2}{\left(n+1\right)\left(2n-1\right)}+\frac{2n-1}{\left(n+1\right)\left(2n-1\right)}=\frac{3n^2+2n-1}{\left(n+1\right)\left(2n-1\right)}\)
\(=\frac{\left(n+1\right)\left(3n-1\right)}{\left(n+1\right)\left(2n-1\right)}=\frac{3n-1}{2n-1}\)
Do E là số tự nhiên \(\Rightarrow\left(3n-1\right)⋮\left(2n-1\right)\)
\(\Leftrightarrow2\left(3n-1\right)⋮\left(2n-1\right)\Rightarrow\left[2\left(3n-1\right)-3\left(2n-1\right)\right]⋮2n-1\)
\(\Leftrightarrow\left(6n-2-6n+3\right)⋮\left(2n-1\right)\Leftrightarrow1⋮\left(2n-1\right)\)
\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Xét \(2n-1=1\Rightarrow n=1\left(KTM:n>1;\text{loại}\right)\)
Xét \(2n-1=-1\Rightarrow n=0\left(KTM:n>1;\text{loại}\right)\)
Vậy ko có số tự nhiên n > 1 nào để \(\left(3n-1\right)⋮\left(2n-1\right)\) hay 3n - 1 ko chia hết cho 2n - 1
=> điều giả sử là sai hay E ko thể là số tự nhiên (đpcm)
Quên cách làm thôi bn .. nếu bn bk thì giải ra đi
Ở đây là chỗ có thể đặt câu hỏi cũng như trả lời mak
Vì \(b\in P;b\ne3\)
\(\Rightarrow\orbr{\begin{cases}b\text{≡}2\left(mod3\right)\\b\text{≡}1\left(mod3\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b^2\text{≡}4\text{≡}1\left(mod3\right)\\b^2\text{≡}1^2\text{≡}1\left(mod3\right)\end{cases}}\)
\(\Rightarrow b^2\text{≡}1\left(mod3\right)\)
\(\Rightarrow1993b^2\text{≡}1993\text{≡}1\left(mod3\right)\)
Lại có \(3x\text{≡}0\left(mod3\right)\)
\(2\text{≡}2\left(mod3\right)\)
\(\Rightarrow A=3x+2+1993b^2\text{≡}0+2+1\text{≡}3\text{≡}0\left(mod3\right)\)
\(x\in N;b>1\Rightarrow A>0+2+1993.2^2>3\)
\(\Rightarrow\)A là hợp số
Vậy ...
b nguyên tố khác 3
áp dụng t/c "bình phương số lẻ luôn có dạng 3k+1" ta có:
nếu b =2 số chắn duy nhất A=3x+2+1993.4 chia hết cho 3
b^2=3k+1
A=3x+2+1993(3k+1)=3x+1993.3k+3 luôn chia hết cho 3 với mọi x tự nhiên => dpcm
nếu \(n=0\) thì ta thấy bài toán đúng
giả sử \(n=k\) thì ta có : \(5^{k+2}+26.5^k+8^{2k+1}⋮59\)
khi đó nếu \(n=k+1\) thì ta có :
\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+3}+26.5^{k+1}+8^{2k+3}\)
\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)
\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)
\(\Rightarrow\left(đpcm\right)\)
Xét vế trái : \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=2n+1-2\sqrt{n}.\sqrt{n+1}\)
Xét vế phải : \(\sqrt{\left(2n+1\right)^2}-\sqrt{\left(2n+1\right)^2-1}=\left|2n+1\right|-\sqrt{\left(2n+1-1\right)\left(2n+1+1\right)}=2n+1-2\sqrt{n}.\sqrt{n+1}\)
=> VT = VP
=> đpcm
Ta có: \(2^{2n+1}=2.2^{2n}\) chia cho \(3\) dư \(2\forall n\in N.\)
\(\Rightarrow2^{2n+1}=3k+2\left(k\in N\right)\)
\(\Rightarrow A=2^{2^{2n+1}}+31=2^{3k+2}+31=4\left(2^3\right)^k+31=4.8^k+31\)
Lại có: \(8^k\) chia cho \(7\) dư \(1\forall k\in N\)
\(\Rightarrow4.8^k\) chia cho \(7\) dư \(4\forall k\in N\)
\(\Rightarrow4.8^k+31\) chia hết cho \(7\forall k\in N\)
\(\Rightarrow A=2^{2^{2n+1}}+31\) chia hết cho \(7\forall n\in N\)
Mà: \(A>7\)
\(\RightarrowĐpcm\)