Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=x^7+x+\frac{1}{x}+\frac{1}{x^7}-\left(x+\frac{1}{x}\right)=x^7+\frac{1}{x^7}\)
b/ Ta có:
\(\left(x+\frac{1}{x}\right)^2=49\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=49-2=47\)
\(\left(x+\frac{1}{x}\right)^3=343\)
\(\Leftrightarrow x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)=343\)
\(\Leftrightarrow x^3+\frac{1}{x^3}=343-3.7=322\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=47.322=15134\)
\(\Leftrightarrow x^5+\frac{1}{x}+x+\frac{1}{x^5}=15134\)
\(\Leftrightarrow x^5+\frac{1}{x^5}=15134-7=15127\)
a)\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=x^7+x+\frac{1}{x}+\frac{1}{x^7}-x-\frac{1}{x}\)
=\(x^7+\frac{1}{x^7}\)
\(x+\frac{1}{x}=7\)
=>\(x\left(x+\frac{1}{x}\right)=7x\)
=>\(^{x^2-7x+1=0}\)
=>\(x=\frac{7+3\sqrt{5}}{2};x=\frac{7-3\sqrt{5}}{2}loại\)
=>\(x^5+\frac{1}{x^5}=15127\)
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
b) Ta có: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
⇔\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)-\left(x+1\right)^3=0\)
⇔\(x^3-6x^2+12x-8+9x^2-1-\left(x^3+3x^2+3x+1\right)=0\)
⇔\(x^3+3x^2+12x-9-x^3-3x^2-3x-1=0\)
⇔\(9x-10=0\)
hay 9x=10
⇔\(x=\frac{10}{9}\)
Vậy: \(x=\frac{10}{9}\)
c) \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
⇔\(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{5}=0\)
⇔\(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{3\left(x+7\right)}{15}=0\)
⇔\(3\left(2x-1\right)-5\left(x-2\right)-3\left(x+7\right)=0\)
⇔\(6x-3-5x+10-3x-21=0\)
⇔\(-2x-14=0\)
⇔\(-2x=14\)
hay x=-7
Vậy: x=-7
d) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
⇔\(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
⇔\(\frac{6\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
⇔\(6x-18+7x-35-13x-4=0\)
⇔\(-21\ne0\)
Vậy: x∈∅
e) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
⇔\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}-\frac{\left(x+10\right)\left(x-2\right)}{3}=0\)
⇔\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{3\left(x+4\right)\left(2-x\right)}{12}-\frac{4\left(x+10\right)\left(x-2\right)}{12}=0\)
⇔\(x^2+14x+40-\left(3x+12\right)\left(2-x\right)-\left(4x+40\right)\left(x-2\right)=0\)
⇔\(x^2+14x+40-\left(24-6x-3x^2\right)-\left(4x^2+32x-80\right)=0\)
⇔\(x^2+14x+40-24+6x+3x^2-4x^2-32x+80=0\)
⇔\(-12x+96=0\)
⇔\(-12x=-96\)
hay x=8
Vậy: x=8
a,\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b,Áp dụng câu a:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
a)
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) S =\(\frac{1}{x}-\frac{1}{x+5}+\frac{1}{x+5}=\frac{1}{x}\)
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)
<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)
<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt t = x2 + x
<=> t(t - 2) - 24 = 0
<=> t2 - 2t - 24 = 0
<=> t2 - 6t + 4t - 24 = 0
<=> (t + 4)(t - 6) = 0
<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy S = {2; -3}
(lưu ý: thay "ktm" thành vô lý và giải thích thêm)
\(\left(x+3\right)^4+\left(x+5\right)^4=2\)
<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0
Đặt y = x + 4
<=> (y - 1)4 + (y + 1)4 - 2 = 0
<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0
<=> 2y4 + 12y2 = 0
<=> 2y2(y2 + 6) = 0
<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)
<=> y = 0
<=> x + 4 = 0
<=> x = -4
Vậy S = {-4}
\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)
<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)
<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)
<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)
<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))
<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy S = {-2; 1}
câu cuối: + 3 vào sau các phân số của pt như trên
Ta có: \(A=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+.....+\frac{1}{\left(x+9\right)\left(x+11\right)}\)
\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+....+\frac{1}{x+9}-\frac{1}{x+11}\)
\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+11}\)
\(\Rightarrow A=\frac{x+11-x+1}{\left(x+1\right)\left(x+11\right)}=\frac{12}{\left(x+1\right)\left(x+11\right)}\)