K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 10 2022

Lời giải:

$(-x)^{2n}=[(-1)x]^{2n}=(-1)^{2n}x^{2n}=[(-1)^2]^nx^{2n}=1^nx^{2n}=x^{2n}$

$(-x)^{2n+1}=[(-1)x]^{2n+1}=(-1)^{2n+1}x^{2n+1}=(-1)^{2n}.(-1).x^{2n+1}$

$=[(-1)^2]^n(-1).x^{2n+1}=1^n(-1).x^{2n+1}=-1.x^{2n+1}=-x^{2n+1}$

18 tháng 10 2022

a) vì -X x (-X) = X nên (-x)2n = x2n ( với điều kiện n là số chẵn)
vì -x*-x*-x = -x nên -x2n+1 = -x2n+1 ( với điều kiện n + 1 là số lẻ

13 tháng 12 2019

Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn

 \(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\)\(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ;  \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)

\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)

\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)

21 tháng 5 2019

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0

vậy ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\ge\) 0

mà ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\le\)0

suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0

do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)

14 tháng 12 2015

giấu tên da ko giup Yuki thi thui cu bay dat doi **** nay no

14 tháng 12 2015

hà lê is very good, i too

2 tháng 7 2021

Ta có f(x ) - g(x) = x2n - x2n - 1 + ... + x2- x + 1 - (-x2n + 1 + x2n - x2x - 1 + ... + x2 - x + 1)

= x2n + 1

Thay x = 1/10 vào biểu thức => x2n + 1 = \(\left(\frac{1}{10}\right)^{2n+1}=\frac{1}{10^{2n+1}}=\frac{1}{10...0}\left(2n+1\text{ chữ số 0}\right)\)

2 tháng 7 2021

\(f\left(x\right)-g\left(x\right)=x^{2n}-x^{2n-1}+...-x+1-\left(-x^{2n+1}+x^{2n}+...-x+1\right)\)

\(=x^{2n}-x^{2n-1}+...+x^2-x+1+x^{2n+1}-x^{2n}+...+x-1\)

\(=x^{2n+1}+\left(x^{2n}-x^{2n}\right)+...+\left(x-x\right)+\left(1-1\right)\)

\(=x^{2n+1}\)

Thay \(x=\frac{1}{10}\) vào \(f\left(x\right)-g\left(x\right)\) ta được:

\(f\left(x\right)-g\left(x\right)=\left(\frac{1}{10}\right)^{2n+1}=\frac{1}{10^{2n+1}}\)

26 tháng 3 2016

ko có điều kiện hả bạn