K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

a) Ta có:

\(x^2+2xy+y^2+1\)

\(=\left(x+y\right)^2+1\)

\(\left(x+y\right)^2\ge0\) với mọi x và y

\(\Rightarrow\left(x+y\right)^2+1\ge1\)

\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x

b) Ta có:

\(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x

9 tháng 12 2017

\(x^2-x+1>0\)

\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)

\(\RightarrowĐPCM\)

9 tháng 12 2017

Mọi ng giúp em

14 tháng 12 2016

\(A=2x^2+4y^2+4xy-6z+10\)

\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)

   \(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow A\ge0+0+1=1>0\)

Vậy ...

6 tháng 7 2017

Ta có : x2 - xy + y2 + 1 

 \(=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}+1\)

\(=\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\)

Mà \(\left(x-\frac{y}{2}\right)^2\ge0\forall x\)

     \(\left(\frac{3y}{2}\right)^2\ge0\forall x\)

Nên \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\ge1\forall x\)

Vậy \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1>0\forall x\)

Hay : x2 - xy + y2 + 1  > 0 \(\forall x\)

18 tháng 12 2017

Sửa đề: \(A=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\)

\(A=3\left(x^2-2x+1+\dfrac{1}{3}\right)\)

\(A=3\left(x^2-2x+1\right)+1\)

\(A=3\left(x-1\right)^2+1>0\left(đpcm\right)\)

9 tháng 9 2017

\(x^2+3xy+4y^2+1=\left(x^2+2.x.\frac{3}{2}y+\frac{9}{4}y^2\right)+\frac{7}{4}y^2+1\)

\(=\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2+1\)

Vì \(\left(x+\frac{3}{2}y\right)^2\ge0;\frac{7}{4}y^2\ge0\) nên \(\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2\ge0\)

\(\Rightarrow\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2+1\ge1>0\)(đpcm)

29 tháng 6 2016

x^2-x+1

=x^2-x+1/4+3/4

=(x-1/2)^2+3/4

Vì (x-1/2) lớn hơn bằng 0 với mọi x nên (x-1/2)^2+3/4>0

22 tháng 6 2018

Bài 1:

a) \(x^2-x+1\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0;\forall x\)

b) \(25x^2+10x+2\)

\(=25x^2+10x+1+1\)

\(=\left(5x+1\right)^2+1\ge1>0;\forall x\)

c) \(3x^2+2x+14\)

\(=3x^2+2x+\dfrac{1}{3}+\dfrac{41}{3}\)

\(=\left(\sqrt{3}x+\dfrac{\sqrt{3}}{3}\right)^2+\dfrac{41}{3}\ge\dfrac{41}{3}>0;\forall x\)

d) \(2x^2+y^2-2xy-2x+2\)

\(=x^2+y^2-2xy-2x+x^2+1+1\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+1\ge1>0;\forall x\)

Vậy ...

22 tháng 6 2018

thank nhiều lk nha ,hii

2 tháng 5 2015

a,        3x-7x-2>5x+4

        <-> 3x-7x-5x  > 4+2

        <-> -9x >6

        <->  x<-2/3

b, 2x2+4x+3>0   <=>   2(x2+2x+1)-2+3=2(x+1)2+1

vì 2(x+1)2 >0   ;1>0  => 2x2+4x+3 >0

26 tháng 7 2017

sao lại -2+3 VẬY PẠN

2 tháng 1 2018

Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)

               \(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)

=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)

^_^

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)

\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)

\(\Rightarrow Q>0\)