Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Theo quy tắc 3 điểm: \(\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}\)
\(\overrightarrow{AD}=\overrightarrow{AO}+\overrightarrow{OD}\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{AO}+\overrightarrow{OD}\)
\(\overrightarrow{OD}=-\overrightarrow{OB}\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AB}=2\overrightarrow{AO}\)
b/ \(\overrightarrow{AC}=2\overrightarrow{AO}=2\overrightarrow{a};\overrightarrow{BD}=2\overrightarrow{BO}=2\overrightarrow{b}\)
\(\overrightarrow{BC}=\overrightarrow{BO}+\overrightarrow{OC}=\overrightarrow{BO}+\overrightarrow{AO}=\overrightarrow{a}+\overrightarrow{b}=-\overrightarrow{DA}\)
\(\overrightarrow{AB}=-\overrightarrow{CD}=\overrightarrow{AO}+\overrightarrow{OB}=\overrightarrow{a}-\overrightarrow{b}\)
Sửa đề: Chứng minh \(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)
\(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AM}\)
\(\overrightarrow{AC}-\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AC}\)
Do đó: \(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AC}-\overrightarrow{MC}\)
=>\(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)
Chưa đủ dữ kiện đề bài để chứng minh đẳng thức. Bạn xem lại đề.