Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
A = 12 + 22 + 32 +....+n2
A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)
A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n
A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n
A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]
A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]
A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)
A =(n+1)n/2 + 1/3.(n-1)n(n+1)
A = n(n+1)[1/2 + 1/3 .(n-1)]
A = n.(n+1) \(\dfrac{3+2n-2}{6}\)
A= n.(n+1)(2n+1)/6
Bài 2 :
a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070
(x+10 +x+1).{( x+10 - x -1): 1 +1):2 = 5070
(2x + 11)10 : 2 = 5070
( 2x + 11)5 = 5070
2x+ 11 = 5070:5
2x = 1014 - 11
2x = 1003
x = 1003 :2
x = 501,5
b, 1 + 2 + 3 +...+x = 820
( x + 1)[ (x-1):1 +1] : 2 = 820
(x +1).x = 820 x 2
(x +1).x = 1640
(x +1) .x = 40 x 41
x = 40
a) -12.(x - 5) + 7(3 - x) = 5
=> -12x + 60 + 21 - 7x = 5
=> -19x + 81 = 5
=> -19x = 5 - 81
=> -19x = -76
=> x = -76 : (-19)
=> x = 4
b) (x + 1) + (x + 2) + (x + 3) + ... + (x + 20) = 250
=> (x + x + x + ... + x) + (1 + 2 + 3 + ... + 20) = 250
=> 20x + 210 = 250
=> 20x = 250 - 210
=> 20x = 40
= > x = 40 : 20
=> x = 2
\(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(\Leftrightarrow-12x+60+21-7x=5\)
\(\Leftrightarrow-19x+81=5\)
\(\Leftrightarrow81-5=19x\)
\(\Leftrightarrow19x=76\)
\(\Leftrightarrow x=4\)
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)
Bài 1 :
\(A=3^0+3^1+3^2+3^3+...+3^{98}\)
\(A=\left(1+3+3^2\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\) ( Nhóm 3 số 1 nhé )
\(A=13+.....+3^{97}.13⋮13\left(\text{đ}pcm\right)\)
Bài 2 :
Theo ý a ta có :
\(A=13+.....+3^{97}.13+3^{99}+3^{100}\)
\(A=13+.....+3^{97}.13+3^{99}.4⋮̸13\)
Bài 3 :
Để D chia hết cho 2 thì x chia hết cho 2
1. \(A=3^0+3^1+3^2+...+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{96}\right)\)chia hết cho \(13\).
2. \(B=3^0+3^1+3^2+3^3+...+3^{100}\)
\(=1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)không chia hết cho \(13\).
3. \(D=\left(12.3+26.b+2022.c+x\right)\)chia hết cho \(2\)
\(\Leftrightarrow x⋮2\)(vì \(12.3⋮2,26b⋮2,2022c⋮2\))
a. 100 - 7 ( x - 5 ) = 58
<=> 7 ( x - 5 ) = 100 - 58
<=> 7 ( x - 5 ) = 42
<=> x - 5 = 42 : 7
<=> x - 5 = 6
<=> x = 6 + 5
<=> x = 11
Tương tự tiếp.
a;100-7(x-5)=58
=>7(x-5)=100-58=42
=>x-5=42:7=6
=>x=6+5=11
b;12(x-1):3=72
=>12(x-1)=72.3=216
=>x-1=216:12=18
=>x=18+1=19
c;12-4(x-1)=4
=>4(x-1)=12-4=8
=>x-1=8:4=2
=>x=2+1=3
d;32-12x=8
=>12x=32-8=24
=>x=24:12=2
nho h do nhe viet moi tay lam day biet ko
a, (-4) . (+125) . (-25) . 6 . (-8)
=[ (-4) . (-25) ] . [ (+125) . (-8) ] . 6
= 100 . (-1000) . 6
= -100 000 . 6
= -600 000
b, 122 . (-12345) + 12345 . (-78)
= 12345 . [ (-122) + (-78) ]
= 12345 . (-200)
= -2 469 000
Bài làm:
Ta có: \(\left(a-b\right)\left(a+b\right)=a^2+ab-ab-b^2=a^2-b^2\)
Áp dụng vào tính: (đề đoạn cuối thiếu bình phương của 99 nhé)
Ta có: \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot...\cdot\left(1-\frac{1}{99^2}\right)\)
\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot...\cdot\frac{99^2-1}{99^2}\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}\cdot\frac{\left(3-1\right)\left(3+1\right)}{3^2}\cdot...\cdot\frac{\left(99-1\right)\left(99+1\right)}{99^2}\)
\(=\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}\cdot...\cdot\frac{98.100}{99^2}\)
\(=\frac{\left(1\cdot2\cdot...\cdot98\right)\cdot\left(3\cdot4\cdot...\cdot100\right)}{\left(2\cdot3\cdot...\cdot99\right)\cdot\left(2\cdot3\cdot...\cdot99\right)}=\frac{100}{2\cdot99}=\frac{50}{99}\)