Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích b ra bằng hằng đẳng thức
Ta có: \(b=4n^2+8n+4+1\)
\(=4\left(n^2+2n+1\right)+1\)
\(=4\left(n+1\right)^2+1\)
Gọi d là ước chung của a,b
Ta có: \(\orbr{\begin{cases}n+1⋮d\\4\left(n+1\right)^2+1⋮d\end{cases}}\)
Mà \(4\left(n+1\right)^2⋮\left(n+1\right)\)
Vậy d=1 suy ra a và b là hai số nguyên tố cùng nhau
Gọi ƯCLN(a; a.b+4) là d. Ta có:
a chia hết cho d => a.b chia hết cho d
a.b+4 chai hết cho d
=> a.b+4-a.b chia hết cho d
=> 4 chia hết cho d
=> d thuộc Ư(4)
Mà a là số lẻ
=> d khác 2; -2; 4; -4
=> d ∈{1; -1}
=> d = 1
=> ƯCLN(a; a.b+4) = 1
=> a và a.b+4 nguyên tố cùng nhau (đpcm)
Gọi d là ước chung lớn nhất của a và ab + 4
\(\Rightarrow\hept{\begin{cases}a⋮d\\ab+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}ab⋮d\\ab+4⋮d\end{cases}\Rightarrow}4⋮d\)
Vậy d = 1 hoặc d = 2
Nếu d = 1 thì a và ab + 4 là hai số nguyên tố cùng nhau
Nếu d = 2 thì a chia hết cho 2 nên a là một số tự nhiên chẵn => vô lý
đpcm
1 ) a + 5b chia hết cho 7
=> 10 ( a + 5b ) chia hết cho 7
=> 10a + 50b chia hết cho 7
( 10a + b ) + 49b chia hết cho 7
Mà : 49b chia hết cho 7
=> 10a + b chia hết cho 7
Bài 2 :
a) Vì ƯCLN(a,b)=16 nên ta có : \(\hept{\begin{cases}a⋮16\\b⋮16\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=16m\\b=16n\\ƯCLN\left(m,n\right)=1\end{cases}}\)
Mà a+b=128
\(\Rightarrow\)16m+16n=128
\(\Rightarrow\)16(m+n)=128
\(\Rightarrow\)m+n=8
Vì ƯCLN(m,n)=1 và m>n nê ta có bảng sau :
m 7 5
n 1 3
a 112 80
b 16 48
Vậy (a;b)\(\in\){(112;16):(80;48)}
b) Gọi ƯCLN(2n+1,6n+1) là d (d\(\in\)N*)
Vì ƯLN(2n+1,6n+1)=d nên ta có : 2n+1\(⋮\)d và 6n+1
\(\Rightarrow\)2n+1-6n+1\(⋮\)d
\(\Rightarrow\)6(2n+1)-2(6n+1)\(⋮\)d
\(\Rightarrow\)12n+6-12n+2\(⋮\)d
\(\Rightarrow\)4\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư(4)={1;2;4}
Mà 2n+1 là số lẻ
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1 và 6n+1 là 2 số nguyên tố cùng nhau
Vậy 2n+1 và 6n+1 là 2 số nguyên tố cùng nhau.
_Ở đâu vại m???