Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)
\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)
Vậy A > 1/2
b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Vậy B > 1/2
c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)
Vậy C > 1
BÀI 1
a, \(5\times\frac{-7}{10}=\frac{-35}{10}=\frac{-7}{2}\)
b, \(\frac{4}{5}\times\frac{-7}{10}=\frac{-28}{50}=\frac{-14}{25}\)
c, \(\frac{4}{9}+\frac{4}{3}\times\frac{16}{4}=\frac{4}{9}+\frac{16}{3}=\frac{52}{9}\)
d, \(\frac{11}{22}-\frac{3}{9}\times\frac{14}{21}=\frac{11}{22}-\frac{2}{9}=\frac{55}{198}=\frac{5}{18}\)
BÀI 2
\(A=\frac{6}{13}\times\frac{5}{7}+\frac{6}{13}\times\frac{2}{7}+\frac{17}{13}\)
\(A=\frac{30}{91}+\frac{12}{91}+\frac{17}{13}\)
\(A=\frac{30}{91}+\frac{12}{91}+\frac{119}{91}\)
\(A=\frac{161}{91}=\frac{23}{13}\)
\(B=\frac{11}{15}\times\frac{4}{11}+\frac{11}{15}\times\frac{5}{11}+\frac{11}{15}\times\frac{2}{11}\)
\(B=\frac{4}{15}+\frac{1}{3}+\frac{2}{15}\)
\(B=\frac{11}{15}\)
\(C=\left(\frac{19}{64}-\frac{33}{22}+\frac{24}{51}\right)\times\left(\frac{1}{5}-\frac{1}{15}-\frac{2}{15}\right)\)
\(C=\frac{-797}{1088}\times0\)
\(C=0\)
\(D=\frac{8}{13}\times\frac{7}{12}+\frac{8}{13}\times\frac{5}{12}-\frac{1}{12}\)
\(D=\frac{14}{39}+\frac{10}{39}-\frac{1}{12}\)
\(D=\frac{83}{156}\)
bạn biết câu náy không (24 + 11) . {546 - [14 . (64 - 2^{3}3) : 2]} =
Bài 1:
a; \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{7}{21}\) + (- \(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{1}{3}\) -\(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{10}{36}\)) + (\(\dfrac{8}{19}\) + \(\dfrac{11}{19}\)) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{5}{18}\)) + \(\dfrac{19}{19}\) - 0 - \(\dfrac{5}{8}\)
= 0 + 1 - \(\dfrac{5}{8}\)
= \(\dfrac{3}{8}\)
b; \(\dfrac{1}{13}\) + (\(\dfrac{-5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\)) - (\(\dfrac{12}{17}\) - \(\dfrac{5}{18}\) + \(\dfrac{7}{5}\))
= \(\dfrac{1}{13}\) - \(\dfrac{5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{12}{17}\) + \(\dfrac{5}{18}\) - \(\dfrac{7}{5}\)
= (\(\dfrac{1}{13}\) - \(\dfrac{1}{13}\)) + (\(\dfrac{12}{17}\) - \(\dfrac{12}{17}\)) + (-\(\dfrac{5}{18}\) + \(\dfrac{5}{18}\)) - \(\dfrac{7}{5}\)
= 0 + 0 + 0 - \(\dfrac{7}{5}\)
= - \(\dfrac{7}{5}\)
Bài 1 c;
\(\dfrac{15}{14}\) - (\(\dfrac{17}{23}\) - \(\dfrac{80}{87}\) + \(\dfrac{5}{4}\)) + (\(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\))
= \(\dfrac{15}{14}\) - \(\dfrac{17}{23}\) + \(\dfrac{80}{87}\) - \(\dfrac{5}{4}\) + \(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\)
= (\(\dfrac{15}{14}-\dfrac{15}{14}\)) + (\(-\dfrac{17}{23}+\dfrac{17}{23}\)) - (\(\dfrac{5}{4}\) - \(\dfrac{1}{4}\)) + \(\dfrac{80}{87}\)
= 0 + 0 - 1 + \(\dfrac{80}{87}\)
= - \(\dfrac{7}{87}\)
a) \(\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{10}{16}+\dfrac{10}{24}\)
\(=\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{5}{8}+\dfrac{5}{12}\)
\(=\left(\dfrac{3}{8}+\dfrac{5}{8}\right)+\left(\dfrac{7}{12}+\dfrac{5}{12}\right)\)
\(=1+1\)
\(=2\)
b) \(\dfrac{4}{6}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{14}{6}\)
\(=\dfrac{2}{3}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{7}{3}\)
\(=\left(\dfrac{2}{3}+\dfrac{7}{3}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)+\left(\dfrac{17}{9}+\dfrac{1}{9}\right)\)
\(=3+2+2\)
\(=7\)
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{7}\)
\(=\dfrac{6}{7}\)
Bài 1:
5; (-23) + 105
= 105 - 23
= 82
6; 78 + (-123)
= 78 - 123
= - (123 - 78)
= - 45
bài1
1)2763 + 152 = 2915
2)-7 +(-14)
=-(14 +7)
=-21
a) A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 22 + 1 22 + ... 1 22 ⏟ 11 s = 11 22 = 1 2 .
b) B = 1 6 + ... 1 9 + 1 10 + ... + 1 19 < 1 4 + ... + 1 4 ⏟ 4 s o + 1 10 + ... + 1 10 ⏟ 10 s o = 2
c) C = 1 10 + 1 11 + ... + 1 100 > 1 10 + 1 100 = ... + 1 100 ⏟ 90 s o = 1 10 + 90 100 = 1