Chứng minh rằng: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

a) Ta có:

\(8^5+2^{11}=34816\)

Phân tích ra thừa số nguyên tố số bằng: \(34816=2^{11}.17\)mà \(17⋮17\Leftrightarrow2^{11}.17⋮17\)

\(\Leftrightarrow34816⋮17\Leftrightarrow\left(8^5+2^{11}\right)⋮17\)

b) \(8^7-2^{18}=1835008\)

Phân tích ra thừa số nguyên tố số bằng: \(1835008=2^{18}.7=2^{17}.14\)mà \(14⋮14\Leftrightarrow2^{17}.14⋮14\Leftrightarrow2^{18}.7⋮14\)

\(\Leftrightarrow1835008⋮14\Leftrightarrow\left(8^7-2^{18}\right)⋮14\)

4 tháng 8 2017

Lời giải : a/ Vì 85= (23)5 = 215 nên Ta có: 85+211 = 215+211 = 211.(24+1) = 211.17 chia hết cho 17

               b/  Vì 87 = (23)7 = 221 nên  87- 218 = 221 – 218 = 218(23 – 1) = 218.7 = 217.14 chia hết cho 14

               c/ Vì (9x + 13y) chia hết cho 19 nên 2.(9x + 13y) chia hết cho 19.

                Tức là (18x + 26y) chia hết cho 19 . Ta có 18x + 26y = 19x – x + 19y + 7y = 19(x+y) +(7y – x)     

                chia hết cho 19, mà 19(x+y) chia hết cho 19 nên (7y – x) chia hết cho 19

Chúc Mạnh Châu học tập ngày càng giỏi nhé. Học thật tốt lý thuyết, nhớ công thức và vận dụng công thức linh hoạt.

24 tháng 7 2017

Tổng của nó không chia hết cho 2 thì chắc chắn sẽ có 1 số lẽ và 1 số chẵn

Mà khi có số chẵn thì chắc chắn tích của nó chia hết cho 2

24 tháng 7 2017

+ Tổng hai số tự nhiên không chia hết cho 2 thì tổng của 2 số tự nhiên đó là 1 số lẻ

+ Tổng của hai số tự nhiên cùng lẻ (Hoặc cùng chẵn) là 1 số chẵn, tổng hai số tự nhiên trong đó 1 số lẻ, số còn lại chẵn thì tổng của chúng là 1 số lẻ

=> Trong hai số tự nhiên đó sẽ có 1 số là số lẻ và số còn lại là số chẵn

+ Tích của 1 số chẵn với 1 số lẻ là 1 số chẵn

=> tích của chúng chia hết cho 2 

=(3^4)^7-(3^3)^9-(3^2)^13

=3^28-3^27-3^26

=3^26.3^2-3^26.3-3^26.1

=3^26.(3^2-3-1)=3^26.5=3^22.3^4.5=3^22.405

Vậy 81^7-27^9-9^13 luôn chia hết cho 405

6 tháng 12 2017

Ta có: \(\widehat{A}=\dfrac{2}{5}\widehat{B}=\dfrac{1}{4}\widehat{C}\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{1}{\dfrac{2}{5}}}}=\widehat{\dfrac{C}{\dfrac{1}{\dfrac{1}{4}}}}\)

\(\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{5}{2}}}=\widehat{\dfrac{C}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\widehat{\dfrac{A}{1}}=\dfrac{\widehat{B}}{\dfrac{5}{2}}=\widehat{\dfrac{C}{4}}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+\dfrac{5}{2}+4}=\dfrac{180}{9}=20\)

\(\Rightarrow\widehat{A}=20^o\)

\(\widehat{\dfrac{B}{\dfrac{5}{2}}}=20\Rightarrow\widehat{B}=50^o\)

\(\widehat{\dfrac{C}{4}}=20\Rightarrow\widehat{C}=80^o\)

Vậy............................

Bài 1: Tính hợp lí:a/ - 2003 + ( - 25 ) + 75 + 2003b/  2 . ( -25 ) . ( -4 ) . 50c/ - 65 . ( 55 - 17 ) - 55 . ( 17 - 65 )d/ \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\) Bài 2: Tìm x:a/ 11 - ( - 53 + x ) = 97b/ | x + 3 | = 1c/ \(\frac{x}{4}=\frac{5}{x+1}\)  Bài 3:a/ Tìm số tự nhiên x; y biết rằng: \(4< \frac{9}{x}< \frac{12}{y}< 18\) b/ Tìm số nguyên x; y biết rằng: \(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\) c/ Tìm số tự nhiên a và b...
Đọc tiếp

Bài 1: Tính hợp lí:

a/ - 2003 + ( - 25 ) + 75 + 2003

b/  2 . ( -25 ) . ( -4 ) . 50

c/ - 65 . ( 55 - 17 ) - 55 . ( 17 - 65 )

d/ \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\) 

Bài 2: Tìm x:

a/ 11 - ( - 53 + x ) = 97

b/ | x + 3 | = 1

c/ \(\frac{x}{4}=\frac{5}{x+1}\) 

 

Bài 3:

a/ Tìm số tự nhiên x; y biết rằng: \(4< \frac{9}{x}< \frac{12}{y}< 18\) 

b/ Tìm số nguyên x; y biết rằng: \(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\) 

c/ Tìm số tự nhiên a và b biết rằng : BCNN = 300 và ƯCLN = 15

Bài 4:

   Cho góc AOB và 2 tia OM và ON nằm trong góc đó sao cho : góc AOM + BON < AOB

a/ Trong 3 tia OA; OM; ON tia nào nằm giữa 2 tia còn lại ? Vì sao ?

b/ Giả sử góc AOM = 60o , BON = 50o, MON = 30o. Tính góc AOB

c/ OI là phân giác của góc AOM, OM có phải là phân giác của góc ION không ? Vì sao ?

Bài 5:

    Tìm các số tự nhiên x; y sao cho : ( x + 1 ) chia hết cho y; ( y + 1 ) chia hết cho x 

ài 5:

6
4 tháng 9 2016

ko khó nhưng nhìu => lười leuleu

4 tháng 9 2016

ukm @soyeon_Tiểubàng giải

2 tháng 8 2021

Giải hộ đê

10 tháng 10 2019

Bài 2:

a) \(9^{1945}-2^{1930}\)

Ta có:

\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{.......9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{.......4}\end{matrix}\right.\)

\(\Rightarrow\overline{........9}-\overline{.........4}=\overline{..........5}.\)

\(\overline{.......5}⋮5\) nên \(\overline{.........9}-\overline{........4}=\overline{........5}\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\left(đpcm\right).\)

Chúc bạn học tốt!